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a b s t r a c t

In this paper we consider a very simplified model of a mature waterflooded oil reservoir and study the
asymptotic behavior in time of well’s oil production. More precisely, under assumptions on stationary
points, we mathematically justify and precise classical decline laws: the oil production rate decreases
like C1 t−γ for some γ > 1 if the nonlinear front velocity vanishes when the oil concentration S is close
to vacuum (φ(S) = Sα with α > 0). A more general law is obtained for general vanishing function φ at
vacuum. It decreases exponentially fast like C2 exp(−t) if the nonlinear front velocity does not vanish.
Our calculations allow us to express constants C1, C2 in terms of physical and geometrical features of the
reservoir through PDEs resolution. To the authors’ knowledge, this is the first result taking into account
space variables. This could be of particular interest for the optimization process of oil production.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The optimization of oil production for waterflooded mature
reservoirs is a crucial industrial problem since field operators try to
maximize recovery rates while investment opportunities are often
limited.What should bewater injectors’ and oil producers’ location
and associated injection and production rates in order tomaximize
oil production?

A first step in the study of this question is to investigate the
asymptotic behavior of a mature oil reservoir, and first to prove
that the oil production rate evolves as t−γ for some γ > 1, a clas-
sical law. Complete models of oil reservoirs are too complex to be
handled so that a first step is to study completely a very simpli-
fied model. More complex models will be tackled in forthcoming
papers. Note that decline curve analysis has been developed for a
long time from a formal point of view for instance in [1–5]. More
precisely the empirical Arps decline equation represents the rela-
tionship between the oil production rate and time for oil wells dur-
ing the pseudo steady-state period where S is the oil saturation in
the reservoir at time t and S0 is the initial oil saturation and a, b
are two constants. Themain hypothesis,made in the previous cited
paper, is to assume that the oil rate versus time curve has almost
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constant loss ratio (see [1, p. 233]) namely

d
dt


S

dS/dt


= −b.

Integrating twice, this gives

S = S0 (a + bt)−1/b ,

where a denotes the loss ratio at time t = 0 and 0 ≤ b ≤ 1. If
b = 0, we get an exponential decreasing decline curve namely

S = S0 exp(−at).

The case b = 1 is called a harmonic decline curve. Many published
papers have tried to interpret the Arps decline equation looking at
the expression of a and b in terms of the available physical param-
eters. To the authors’ knowledge, investigations in physical papers
such as [1–5] do not take into account space variables. This is the
main objective of our paper on a simple model in a two-dimension
space linked to some kind of linearization of well-known porous
media equations.

We assume that the pressure satisfies a simple harmonic equa-
tion with the Dirac masses distribution in a two-dimensional
bounded domain

− div (k(x)∇P) =


i

αiδPi (1)
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where αi > 0 for sources and αi < 0 for sinks, and where k(x) > 0
is a given smooth function. Let So be the set of sources and Si be
the set of sinks. The velocity is given by the following Darcy law:

V (x) = −k(x)∇P(x). (2)

The Buckley–Leverett equation is a transport equation used to
model two-phase flow in porous media; see for instance [1]. The
Buckley–Leverett equation or the Buckley–Leverett displacement
can be interpreted as a way of incorporating microscopic effects
due to capillary pressure in two-phase flow into Darcy’s law. We
also assume that the oil concentration follows a nonlinear Buck-
ley–Leverett type that means a transport equation used to model
two-phase flow in porous media. It has the form

∂tS + φ(S)V · ∇S = 0 (3)

where φ(S) is a nonlinear function (see for instance [6]). For exam-
ple, the nonlinear function has the form

φ(S) = Sα
+

(4)

for some α > 0. We must add boundary conditions on P and S, for
instance

P = 0, S = 0 on ∂Ω (5)

and initial condition on S namely

S|t=0 = S0. (6)

Let σ > 0 be small enough. Assuming that oil density is equal to
one and S denotes the reduced oil saturation, we introduce the oil
production rate of the well Pi by

Ei(t) = −


C(Pi,σ )

ψ(S)V · n, (7)

integral over the circle of center Pi and radius σ , where ψ ′
= φ.

Note that (1)–(4) is a severe simplification. More realistic equa-
tions are nonlinear and the coefficient k depends on the solution
S itself. However (2) can be seen as a ‘‘limit equation’’ as S goes to
0. By this way, Eqs. (1)–(2) give the velocity V and the saturation S
may be computed through the transport equation (3).

Stationary points associated with V , namely points Q where
V (Q ) = 0, play a crucial role in the analysis. We will say that a
stationary point is non-degenerate if dV (Q ) ≠ 0.

Readers interested in mathematical studies on more complex
porous media systems with Dirac masses are referred for instance
to [7]. Using the fact that the system may be seen as a decoupled
system, we will prove the following result.

Theorem 1.1. Let Ω, k, αj and Pj (j = 1, . . . , n with sources and
sinks) be such that there exists a unique solution P of (1) satisfying the
boundary conditions (5) 1 with a finite number of stationary points
in Ω , namely points Q such that V (Q ) = 0. We consider physical
situations where all the stationary points are non-degenerate namely
satisfy dV (Q ) ≠ 0.

Assume S0, φ be such that there exists S a solution of (3)–(4) on
(0,+∞) satisfying the boundary conditions (5) 2 and the initial
condition (6) with V given before through (2).

• If φ(0) = 0 and if φ is a strictly increasing function closed to 0,
then the oil production rate (7) of well Pi, for a small enough fixed
σ , behaves, for a time t large enough, as

Ei(t) ∼ C1t−1φ−1(C2t−1).

In particular the oil production rate behaves like

Ei(t) ∼ C3t−1−1/α if φ(S) = Sα with α > 0.

• If φ(0) ≠ 0, the oil production rate decreases exponentially fast
namely

Ei(t) ∼ C1 exp(−C2t).

Remark. In the next sectionwewill prove this theorem in the case
φ(0) = 0, with the case φ(0) ≠ 0 being more simple since in this
case, we do not have to take care of the singular points. Note that
forφ(S) = Sα withα > 0, the oil production ratementioned in the
abstract corresponds to γ = 1 + α and C1 given in (11) calculated
through PDEs resolution.

Remark. Remark that closed circulation areas would not play any
role since they do not evolve in time and the velocity is regular,
divergence free and derived from a gradient far from sources and
sinks.

Remark. Note that Eqs. (1) and (3) are decoupled. More precisely
existence results linked to (1)–(2) and the appropriate boundary
condition (5) related to P may be found in [8] or in [7]. We then
have to solve (3) using the transport velocity V = −k∇P . Note
that V is regular enough far from all Pi.

Remark. Note thatwe have considerably simplified the systemas-
suming that the permeability coefficient k does not depend on the
saturation. The equation for the pressure is therefore more sim-
ple and the flux associated with the saturation is therefore convex.
Usually the flux for the Buckley–Leverett model is a non-convex
function because of the dependency of k with respect to the satu-
ration.

Well posedness of the system. Assuming the conductivity regular
near wells and sinks, the solution P may be split as P = Psingular +

Pregular where the singular part is given by the fundamental solution
for a homogeneous porous medium. More precisely

Psingular =

n
i=1

Pi,singular,

where Pi,singular is given by

Pi,singular(x) = −
αi

2πk(xi)
ln |x − xi|

the fundamental solution, in two-dimensional whole space, of

−div(k(xi)∇qi) = αiδi; i = 1, . . . , n

where xi is the location of the point sources or sinks. The other
quantity Pregular is given by

Pregular =

n
i=1

Pi,regular

through the following PDEs inΩ:

−div(k(x)∇Pi,regular) = div

(k(x)− k(xi))∇Pi,singular


,

with the boundary condition

Pi,regular = −Pi,singular on ∂Ω.

This decomposition has been introduced in [9] and used in [8] to
show the well-posedness of such system with Pregular in H1(Ω) as-
suming some Hölder continuity of permeability at points xi. Note
that if k is smooth enough, the velocity V = −k∇P is smooth out-
side the Dirac masses distribution.

We then have to solve (3) using the transport velocity V =

−k∇P . Along the characteristics associated with the velocity field
V , S satisfies

∂tS + φ(S)∂sS = 0.

Classical regularization approximation (vanishing viscosity meth-
od), see [7,6], ensures the solvability for S. With the solution S be-
ing a sequence of shocks and smooth parts endingwith a relaxation
wave. The method of characteristics will be used after a long-time
to be prescribed to characterize the large time behavior of S at a
point x belonging to C(Pi, σ ) and therefore prove the theorem.
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