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a b s t r a c t

We introduce an integral equation to study the opposing mixed convection problems in boundary layer
theory. This equation is of singularities and two integrands take negative values. Bymeans of some special
analytical techniques, we prove the existence and the nonexistence of positive solutions of this equation
and utilize it to treat analytically themixed convection parameter ε < −1 and the temperature parameter
λ > 0 involved in the problemsmentioned above. Previous results only treated the caseλ = 0 or ε ≥ −1.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this research, we are concerned with the existence and the
nonexistence of analytical solutions of opposing mixed convection
for the following third-order nonlinear differential equation
f ′′′(η)+ (1 + λ)f (η)f ′′(η)+ 2λ(1 − f ′(η))f ′(η) = 0

on [0,∞) (1.1)
subject to the boundary conditions

f (0) = 0, f ′(0) = 1 + ε and f ′(∞) = 1, (1.2)
which has been used to describe the plane mixed convection
boundary layer flow near a semi-infinite vertical plate embedded
in a saturated porous media, with a prescribed power law of the
distance from the leading edge for the temperature, where λ is the
parameter of the temperature profile power-law and ε is themixed
convection parameter, namely, ε =

Ra
Pe

with Ra the Rayleigh num-
ber and Pe the Péclet number. For ε = 0, (1.1)–(1.2) corresponds
to the forced convection, for ε > 0, it corresponds to aiding the
mixed convection and for ε < 0, it corresponds to the opposing
mixed convection. For more details on the physical derivation and
the numerical treatments of (1.1)–(1.2), see [1,2].

Regarding the study of (1.1)–(1.2), Guedda [3] studied the exis-
tence of infinitely many solutions of (1.1)–(1.2) for −1 < λ < 0
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and −1 < ε < 1
2 and the nonexistence of nonnegative solutions

for λ ≤ −1 and ε ≥
1
2 ; Brighi and Hoernel [4] proved the existence

and the uniqueness of convex and concave solutions of (1.1)–(1.2)
for λ > 0, −1 < ε < 0 and ε > 0. For λ = 0, it is well known that
(1.1)–(1.2) is the Blasius equation, Hussaini and Lakin [5] showed
that there exists εc < −1 such that (1.1)–(1.2) has a solution for
ε ≥ εc and no solution for ε < εc . Numerical result showed εc

.
=

−1.3545. For further results on the Blasius equation, onemay refer
to [6,7].

However, to our knowledge, for λ ≠ 0 and ε < −1, there
exists little analytic study on the existence and the nonexistence
of analytical solutions of (1.1)–(1.2).

In this research, our interest is focused on this case. We shall
establish the relation between (1.1)–(1.2) and an integral equation
(see (2.3)) and prove results on the existence and the nonexistence
of positive solutions of this equation, which derive our desired
conclusions as follows.

Theorem 1.1. There exist ε∗ ∈ (−1.807,−1.806) and ε∗
∈

(−1.193,−1.192) such that
(i) (1.1)–(1.2) has no convex solutions for any λ > 0 and each

ε ≤ ε∗.
(ii) (1.1)–(1.2) has a convex solution for each λ > 0 and each

ε ∈ [ε∗,−1).

It iswell known that analytical andnumerical studies of similar-
ity solutions are both of considerable practical importance inmany
fields and can provide an important standard of comparison with-
out introducing the complication of non-similar solutions, much
attention is always focused on them. One may refer to, for exam-
ple, the review and extension of similarity solutions [8,9] and some
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recent studies such as boundary layer flows [10–13], magnetohy-
drodynamic (MHD) [12,14,15], etc. and the references therein.

2. Relation between (1.1)–(1.2) and an integral equation

Let f (η) ∈ C3(R+), f (η) is said to be a convex solution if f (η)
satisfies (1.1)–(1.2) and f ′′(η) > 0 for η ∈ R+, where R+

=

[0,∞).
Throughout this paper, we assume λ > 0 and ε < −1. For the

sake of convenience, let

Notation. β = 1 + ε, ϕ(λ) =
1+3λ
1+λ .

We change (1.1) and (1.2) into (2.1) and (2.2), which can be
found in the literature (see, e.g., Remark 1.2 in [10]).

Proposition 2.1. The problem (1.1)–(1.2) is equivalent to the
following boundary value problem

F ′′′
+ FF ′′

+ (ϕ(λ)− 1)(1 − F ′)F ′
= 0 for η ∈ R+ (2.1)

subject to the boundary conditions

F(0) = 0, F ′(0) = β and F ′(∞) = 1, (2.2)

where F(η) =
√
1 + λf ( η

√
1+λ
).

Let

Γ = {F ∈ C3(R+) : F ′′(η) > 0 on R+
}

and

Q = {z ∈ C[β, 1] : z(t) > 0 for t ∈ [β, 1)},

where C[β, 1] denotes the continuous functions space with the
maximum norm ∥z∥ = max{|z(t)| : t ∈ [β, 1]}.

Now, we establish the relation between (2.1)–(2.2) and an
integral equation.

Lemma 2.1. If F ∈ Γ satisfies (2.1)–(2.2), then

z(t) = ϕ(λ)Az(t)+ (1 − t)Bz(t) for t ∈ [β, 1] (2.3)

has a solution z ∈ Q , where

Az(t) =

 1

t

s(1 − s)
z(s)

ds and Bz(t) =

 t

β

s
z(s)

ds.

Proof. Assume that F ∈ Γ satisfies (2.1)–(2.2). As the same as the
proof of Proposition 3.1 (4) in [10], we have F ′′(∞) = 0.

Let t = F ′(η) be a dependent variable, z(t) = F ′′(η). Since F ′ is
strictly increasing on [0,∞) by F ′′(η) > 0 on R+, then β ≤ t < 1,
z(t) > 0 on [β, 1), z(1) = F ′′(∞) = 0 and z ∈ Q . By 1 = F ′′(η)

dη
dt ,

we see
dη
dt

=
1

F ′′(η)
=

1
z(t)

, F(η) =

 η

0
F ′(σ )dσ =

 t

β

s
z(s)

ds

by setting s = F ′(σ ) and F ′′′(η) = z ′(t) dtdη = z(t)z ′(t).
Substituting F(η), F ′(η), F ′′(η) and F ′′′(η) into (2.1) implies

z ′(t) =
(1 − ϕ(λ))t(1 − t)

z(t)
− Bz(t) for t ∈ [β, 1) (2.4)

and z(1) = 0.
Since

(1 − ϕ(λ))t(1 − t)
z(t)

− Bz(t)

=


(1 − ϕ(λ))t(1 − t)

z(t)
−

 t

0

s
z(s)

ds


− Bz(0), (2.5)

integrating (2.4) from t to 1, using the fact that both terms in the
bracket of the right hand side in (2.5) have the same sign for

t ∈ [0, 1] and noticing that 1

t

 s

β

µ

z(µ)
dµds

=

 t

β

 1

t

µ

z(µ)
ds


dµ+

 1

t

 1

µ

µ

z(µ)
ds


dµ

= (1 − t)Bz(t)+

 1

t

s(1 − s)
z(s)

ds, (2.6)

we see that z(t) satisfies (2.3). �

Since (2.3) contains the improper integrals Az(t) and Bz(t), we first
investigate some properties of solutions of (2.3).

Let z ∈ Q be a solution of (2.3); then
z(1) = 0 and lim

t→1−
(1 − t)Bz(t) = 0.

In fact, if z(1) > 0, then z(t) > 0 for t ∈ [β, 1]. This implies that
two integrands in (2.3) are continuous and then z(1) = 0, a con-
tradiction. Since Az(t) and (1 − t)Bz(t) are well-defined on [β, 1]
and Az(1) = 0, we immediately get that limt→1−(1− t)Bz(t) = 0.
Proposition 2.3(ii) will show that limt→1−(1 − t)Bz(t) is an inde-
terminate form of type 0 × ∞.

The following proposition shows the equivalence between (2.3)
and a first-order differential equation with suitable boundary
condition.

Proposition 2.2. Let z ∈ Q ; then z is a solution of (2.3) if and only
if z(1) = 0 and

z ′(t) =
(1 − ϕ(λ))t(1 − t)

z(t)
− Bz(t) for β ≤ t < 1. (2.7)

Proof. Assume that z ∈ Q is a solution of (2.3). Differentiating
(2.3) with t and combining z(1) = 0, we know that (2.7) holds.
Conversely, integrating (2.7) from t to 1 and using the same argu-
ments used in the proof of Lemma 2.1 and (2.6), we know that z is
a solution of (2.3). �

Proposition 2.3. Let z ∈ Q be a solution of (2.3); then
(i) z(t) ≥ z(0)(1 − t) := γ (t) for t ∈ [0, 1].
(ii)

 1
β

1
z(s)ds = ∞.

Proof. Assume that z ∈ Q is a solution of (2.3).
(i) If there exists t ∈ [0, 1] such that z(t) < γ (t), then t ∈ (0, 1)

since z(0) = γ (0) and z(1) = 0 = γ (1). Let ψ(t) = z(t) − γ (t)
and ξ ∈ (0, 1) satisfying

ψ(ξ) = min{ψ(t) : t ∈ [0, 1]} < 0.

Then ψ ′(ξ) = 0, ψ ′′(ξ) ≥ 0 by the second derivative test and
z ′(ξ) = γ ′(ξ) = −z(0) and then z ′′(ξ) = ψ ′′(ξ) ≥ 0.

Differentiating (2.7) with t , we have

z ′′(t) =
(1 − ϕ(λ))(1 − 2t)− t

z(t)
+
(ϕ(λ)− 1)(1 − t)tz ′(t)

z2(t)
for 0 ≤ t < 1.

Since z(ξ) < γ (ξ) = z(0)(1 − ξ), we see

(1 − ξ)ξz ′(ξ)

z2(ξ)
= −

ξ

z(ξ)
(1 − ξ)z(0)

z(ξ)
< −

ξ

z(ξ)
.

This, together with ϕ(λ)− 1 =
2λ
1+λ > 0, implies

z ′′(ξ) <
(1 − ϕ(λ))(1 − 2ξ)− ξ

z(ξ)
−
(ϕ(λ)− 1)ξ

z(ξ)

=
(1 − ϕ(λ))(1 − ξ)− ξ

z(ξ)
< 0.

This is a contradiction. Hence, (i) holds.
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