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A B S T R A C T

In this work, we have constructed a high dimensional neural network (NN) potential energy function for si-
mulating palladium surface properties. The NN potential was trained with 3035 density functional theory (DFT)
calculations, and was shown to be nearly as accurate as DFT in molecular simulations. Important properties
including lattice constants, elastic properties and surface energies as well as transition state energies and adatom
diffusion barriers were predicted by the NN and were found to be in excellent agreement with DFT results. The
computational time to run the NN was compared to DFT calculation time, and we found this implementation of
the NN is roughly four orders of magnitude faster than DFT. This approach is general and applicable to other
systems and may have applications in modeling catalytic processes at surfaces.

1. Introduction

With density functional theory atomic structure and electronic
structure calculations have now been implemented extensively and
used to obtain an atomic-level understanding of chemical phenomena
and processes. Ab initio based simulations such as molecular dynamics
(MD) [1] and Monte Carlo (MC) [2] simulation have become possible
with progress in high-performance computing. But even with the aid of
the most advanced computers, density-functional theory (DFT)-MD/MC
simulations are still limited to both short time scales (hundreds of pi-
coseconds) and a small scale of a few thousand atoms. It is still ne-
cessary to find methods to accelerate these kinds of simulations to ex-
tend them to larger length and time scales without sacrificing accuracy.

A reliable simulation requires an accurate description of the po-
tential-energy surface (PES), which describes the potential energy as
well as the forces as a function of the atomic coordinates. Progress has
been made in introducing and modeling approximated PESs. There are
basically two different approaches: physical potentials and mathema-
tical potentials. In the physical approach, the PES is simplified by
physical assumptions and approximations, which generally derive from
two and more body-interactions. Parameters in the physical models are
typically fitted to experimental or computational data to reproduce
desired properties. Typically the parameters in physical models have
physical interpretations. There are many physical potentials including
the Lennard-Jones potentials [3], classical force fields [4–8], and re-
active force fields [9,10]. The accuracy of a physical PES is heavily
dependent on the underlying physical model, and they are not always

systematically improvable.
The other approach to PES construction is the use of mathematical

potentials, which employ mathematical fitting models. Generally, these
methods including genetic programming [11], interpolating moving
least squares (IMLS) [12,13], Gaussian approximation potentials
[14,15] and many other improved mathematical forms. Neural net-
works (NN) have become increasingly promising with the introduction
of “high-dimensional” NN systems by Behler and Parrinello [16–18].

A lot of progress has been made recently in creating and using NN
potentials for a variety of systems including Si [19], Cu surfaces [17],
Au bulk, surfaces and clusters [10], water clusters [14], metal oxides
(ZnO [20] and TiO2 [21]), and recently for the dissociation of N2 at Ru
(0001) surfaces [22]. For different systems ranging from single to
multiple compositions, periodic bulk to clusters containing thousands of
atoms, the NN mathematical model has been shown to have an arbi-
trary precision given a sufficiently large amount of training data. In the
work described above, electronic structure calculations such as DFT
calculations were used to train the NN to the desired level of accuracy.

We have been investigating the use of NN potentials for modeling
surface properties of Au [10], Au-Pd segregation [23], and palladium-
oxygen interactions [24]. That work has systematically increased the
complexity of the composition and structure of the surfaces being
modeled, as well as the use of the potentials in extending density
functional theory calculations. The goals of this work are to methodi-
cally increase our understanding of how to construct these potentials,
their advantages and shortcomings, and eventually to be able to reliably
build these potentials for applications in catalysis.
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In this paper, we constructed and studied a Behler-Parrinello NN for
bulk palladium and palladium surfaces. Specifically, we examine dif-
fusion of Pd adatoms at the surface. While not a catalytic reaction, we
view it as a step towards modeling activated processes on surfaces. The
training process was implemented with the Atomistic Machine-learning
Potentials (AMP) code developed by Peterson and Khorshidi [25]. We
show that the NN models a variety of bulk structures, surface energies,
surface vacancy formation and diffusion, and adatom diffusion with
accuracy that is comparable to DFT in most cases. We also show that the
NN can be used in molecular dynamic simulations to estimate adatom
diffusion constants, and that is considerably more cost effective than
running DFT calculations for that purpose.

2. Computational details

2.1. DFT calculations

The reference DFT calculations for NN training were performed with
the Vienna ab initio simulation package (VASP) [26–28] code with the
Perdew-Burke-Ernzerhof [29] generalized gradient approximation
(GGA-PBE) as the exchange-correlation functional. The projector aug-
mented wave function (PAW) [30,31] was chosen to describe the core
electrons. Monkhorst-Pack [32] grids of dense 14× 14×14 k-point
grids for each primitive cell along with a 350 eV plane wave cutoff were
utilized. These parameters achieved ≈1meV convergence in total en-
ergies. The slab models consisted of five layers with the bottom two
layers fixed, with 6Å of vacuum on both sides. We used a similar
density of k-points for the slabs in the non-vacuum directions. The
geometries were optimized using a conjugate-gradient algorithm and
stopped at an energetic criteria of 10−4 eV/atom. Transition states and
energy barriers calculations were performed using standard nudged
elastic band (NEB) method [33]. The training set contained a total of
3035 configurations of different bulk and slab configurations. The DFT
calculations provided potential energies and atomic forces for each
system, and both of them were utilized to train NN potentials.

2.2. Neural network

The NN potentials were constructed in an iterative way using the
AMP code [25], which provides both atomic environment descriptors
and regression models (neural networks). By introducing a cutoff radius
and symmetry functions [34] the BPNN can be utilized to predict en-
ergies for systems that contain different numbers of atoms from the
training set. The potential energy of the system is computed as the sum
of atomic energy contributions, which are determined by the atomic
environment within a cutoff radius. The cutoff radius used was 6.5Å,
which is typical for metals [17]. The neural network architecture re-
ported in this work had two hidden layers with 18 nodes each. The
default four radial and four angular Gaussian symmetry functions in
AMP were used as input.

The training is performed by minimizing the energy and force root
mean squared error (RMSE) between known values in a database of
calculations and predictions from the neural network. The energy goal
was set to 1meV, and the force goal was set to 0.01 eV/Å. It has been
shown that high dimensional NNs are capable of achieving a very high
level of accuracy, but over-fitting needs to be avoided. To assess over-
fitting, we reserved 10% of the training data for validation, and these
configurations are not included in the training process. By using the
trained NN to predict the validation set and comparing the RMSE of
validation to that of training set, we can assess over-fitting. If the error
of validation set is significantly larger than the error of training data,
over-fitting has likely occurred and either more training data is re-
quired to eliminate it or a smaller NN can be used.

In this work, the training data set was generated iteratively. The
initial set started from several ideal or structures with defects including
ideal bulk equations of state and slab structures. The slabs and defect

structures were allowed to relax, and each of the geometry relaxation
steps from this were also included as training data. With this data a pair
of NNs with different architectures was trained, which are typically of
moderate quality and accuracy. We then utilized one of the NNs to
carry out MD or some other simulation to generate a large quantity of
new configurations, and used the second NN to validate the predictions
on the same configurations. Some number of the “new” ones are usually
chosen from the regions where two NNs of different architecture predict
very distinct energies, e.g. the shaded regions shown in Fig. 1. These
structures, reasonable or not, can be computed by DFT calculations and
added into training set. Through this process, the NN can be system-
atically and self-consistently improved. Further details on the training
process are described in the subsequent sections that describe each type
of result.

3. Results and discussion

3.1. NN potential and RSME

Among the total of 3035 calculations, 10% were divided into a
validation set to monitor over-fitting. Gaussian functions are chosen to
describe the local chemical environment of each function. We were able
to use only 8 symmetry functions (four radial, and four angular) in this
work. Our trained NN achieved a reasonable convergence of 5.51meV/
atom residual error for the training set and 1.92meV/atom for the
validation set, so the NN generally reproduced the PES with no evi-
dence for over-fitting. The trained and validation NN RMSE and error
distribution are shown in Fig. 2. The distribution mean value μ and
standard deviation σ are shown, along with the best fit normal dis-
tribution. The errors are approximately described by a normal dis-
tribution with a 0.006 eV/atom standard deviation. We conclude that
this NN is accurate for use in the kind of molecular simulations used in
the training data, e.g. molecular dynamics.

3.2. Bulk properties

3.2.1. Equations of state and cohesive energy
We first show that the NN can describe bulk properties with great

accuracy. We used the NN to predict the equations of state for different
palladium bulk structures, including face-centered cubic (fcc), body-
centered cubic (bcc), hexagonal close-packed (hcp), simple cubic (sc)
and diamond (diam) lattice. These structures represent a range of co-
ordination environments from four to twelve atoms and are the starting
point to look at under-coordinated environments including bulk defects
and surfaces. The equations of state for these bulk structures are shown

Fig. 1. New configurations generated by MD simulations and determined by
two different NN. The shaded black region between the curves represents
structures where the two NNs disagree. These regions contain candidates that
can be added to the training set to improve its accuracy.
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