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h i g h l i g h t s

• Gravity–capillary waves in cylindrical containers with elliptical cross-section are studied.
• We show the dependence of the natural frequencies and the frequency shift on the eccentricity e.
• We retrieve the well-known case of a circular basin for e = 0.
• The elliptical confinement can be used to modulate the damping ratio.
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a b s t r a c t

The linear theory of unforced surface gravity–capillary waves in cylindrical containers with an elliptical
cross-section is studied in detail. General solutions for the velocity potential and the free surface
amplitude are given in terms of Mathieu functions. Our numerical results show the dependence of the
natural frequencies on the fluid properties and the eccentricity e of the container cross-section. The well-
known case of a circular tank for e = 0 is retrieved and remarkable crossings of the mode frequencies for
certain values of e are found. The frequency shift and the wall damping ratio due to viscous dissipation
in the Stokes boundary layers are evaluated numerically. The effect of the viscous dissipation in the bulk,
the wall damping ratio, is estimated.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

An enormous amount of experiments and theoretical works
have been devoted to study liquid surface waves in partially filled
containers (see Refs. [1,2] and references therein). The theory of
liquid surface waves dynamics is based on developing the fluid
field equations, estimating the fluid free-surface motion, and the
resulting hydrodynamic forces and moments. The modal analysis
of a liquid free-surface motion in a partially filled container
estimates the natural frequencies and the corresponding mode
shapes. Knowledge of the natural frequencies is essential in the
design process of liquid tanks and in implementing active control
systems in space vehicles [1,2]. Explicit solutions are possible only
for a few special cases such as upright cylindrical and rectangular
containers. An example is the theoretical prediction of the natural
frequencies when the contact line is pinned (pinned-end edge
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condition) [3,4]. This interesting problemwith edge constraints, for
the case of a circular cylinder, has yielded an excellent agreement
between experimental and theoretical data. In particular, the
agreement for damping rate calculationswith experimental values
is rather satisfactory in the case of pinned-end edges (when
the dissipation in the bulk is taken into account) [5–8]. At
least from the theoretical point of view, it would be beneficial
to other geometry extend recent results achieved in circular
geometry [9–12]. The natural geometry which can make such an
extension is considering basins with an elliptical cross-section.
However, even in the standard theory of standing gravity–capillary
waves, where it is assumed that the contact line can move freely
across the solid boundary (free-end edge condition), the results are
poor in the elliptic geometry [13–15].

The aims of the present work are to present the effect of the
elliptic geometry confinement on the natural frequency and to
show that basins with elliptical cross sections can be used as a tool
for modulation of the surface-wave damping. A brief outline of the
paper is as follows. Section 2 presents the master equations and
boundary conditions. The fluid is assumed to be an inviscid liquid
and surface tension effects are considered. An exact solution of
the problem for free-end edge, which involves Mathieu functions,
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is given in Section 3. Eigenvalues, nodal pattern and frequencies
of the normal modes are given as functions on the eccentricity of
the tank cross-section. Section 4 discusses the viscous dissipation
ratio in the Stokes boundary layers on the lateral wall and the
bottom. Finally, Section 5 estimates the interior damping ratio due
to viscous dissipation in the bulk.

2. Governing equations

In the framework of an inviscid incompressible liquid and
considering small oscillations at the surface, the three-dimensional
velocity potential Φ of the transversal part of the propagating
waves is given by [16]

∇
2Φ = 0, (1)

where the potential Φ must fulfill the conditions
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with g being the acceleration of gravity, L the boundary of the
container cross-section, n a unit vector perpendicular to contour
line L, h the fluid depth, σ the surface tension, and ρ0 the fluid
density.

In the case of a tank with an elliptical cross section the problem
has axial symmetry; thus the stationary solution for Φ(r, t) can be
cast as

Φ = Ψ (x, y) cosh k(z + h) exp(iw0t), (5)

where w0 is the natural frequency and k the wave number. From
Eqs. (1)–(5) we obtain for Ψ (x, y) the Helmholtz equation

∇
2Ψ + k2Ψ = 0, (6)

with the dispersion relation

w0 =


g +

σ

ρ0
k2


k tanh(kh). (7)

Notice that the transversal amplitude of liquid surface at z =

0, denoted by ζ (r, t), is related to the two-dimensional velocity
potential Ψ by the equation [16]

ζ = iζ (x, y) exp(iw0t), ζ =
w0 cosh(kh)
g + σk2/ρ0

Ψ (x, y). (8)

In that sense the nodal structure of free surface displacement is
linked to the function Ψ (x, y).

In the next section we will describe the solution of Eq. (6) by
studying the main characteristics of the capillary–gravity waves in
a basin with elliptical symmetry.

3. Inviscid solution

The Helmholtz equation can be written in elliptic coordinates
as

∂2Ψ

∂ξ 2
+

∂2Ψ

∂η2
+

ϱ2

2
(cosh 2ξ − cos 2η)k2Ψ = 0, (9)

where 0 ≤ ξ, 0 ≤ η < 2π, ϱ > 0, and elliptic and rectangular
Cartesian coordinates are related by the equation [17]

x = ϱ cosh ξ cos η, y = ϱ sinh ξ sin η,

such that the curves ξ = const are confocal ellipses and the curves
η = const are confocal hyperbolas, with focus at (±ϱ, 0).

In our case we are looking for solutions of Eq. (9) in the interior
of the domain D = (ξ , η) : 0 ≤ ξ ≤ ξ0, 0 ≤ η < 2π , whose
boundaryL is an ellipsewith semi-major (minor) axis A (B). Eq. (9)
is factorized as Ψ (ξ , η) = NF(ξ)G(η), where N is a normalization
constant and the functions F(ξ) and G(η) satisfy
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with α the separation constant.
From physical considerations the function G(η) must be

periodic, i.e.,

G(η) = G(η + 2π). (12)

Eq. (11) and the condition (12) are linked to Mathieu’s equa-
tion, where α is a countably infinite set of characteristic values.
These values can be denoted by am(q) for the even solutions Ge =

cem(η, q) and by bm(q), for the odd ones Go = sem(η, q), where
4q = ϱ2k2. The function F(ξ) corresponds to the modified Math-
ieu’s equation and it is related to G(η) solution by the substitution
η = iξ so that

Fe = cem(iξ, q) = Cem(ξ , q), (m = 0, 1, 2 . . .), (13)
Fo = −isem(iξ, q) = Sem(ξ , q), (m = 1, 2 . . .), (14)

where Cem and Sem are themodifiedMathieu functions of first kind
or radial solutions. Following the spatial symmetry of Eq. (9), the
complete set of solutions can be chosen as even or odd eigenfunc-
tions

Ψ e
m = Ne

mcem(η, q)Cem(ξ , q), (15)

Ψ o
m = No

msem(η, q)Sem(ξ , q). (16)

3.1. Eigenvalues

In elliptic coordinates the condition ∂Ψ /∂n = 0 at (x, y) ∈ L
reduces to

dF
dξ


ξ=ξ0

= 0, (17)

with ξ0 = arctanh(B/A). Let ϱkm = ek̃m, e being the eccentricity
and k̃m = Akm, then from Eq. (17) we obtain the set of even and
odd eigenvalues for k̃m,n, where k̃em,n and k̃om,n are solutions of

Ce ′

m(ξ0, (ek̃em,n/2)
2) = 0, Se ′

m(ξ0, (ek̃om,n/2)
2) = 0, (18)

with n = 1, 2, . . . . Recall that the eccentricity e of an ellipse is
related to its semi-axes by the expression e =


1 − B2/A2 [17],

so that one can write ξ0 = arctanh(
√
1 − e2 ), and therefore,

the characteristic values k̃m,n depends solely on the eccentricity
e. Thus, if the ratio value between semi-axes B/A is modified,
the pattern of the wave amplitude will be different carrying
the information of the surface symmetry and thereby of elliptic
geometry.

An important conclusion emanating from the Helmholtz equa-
tion in an elliptical domain is the separation of the eigenfunctions
into two independent Hilbert subspaces, which we have denoted
byO (odd) and E (even). The eigenvalue problem (18) states that for
a givenm the symmetry (O or E) remains valid for any eccentricity
value. Thus, eigenvalues km,n for even and odd solutions with the
same m but different elliptical oscillation number n cannot cross
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