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h i g h l i g h t s

• Wemodel the free surface of an ideal fluid flowing past submerged obstacles.
• We examine the effect of surface tension and obstacle position, on the free surface.
• For hydraulic falls we show that solutions are not unique.
• We find gravity–capillary waves trapped between two obstructions.
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a b s t r a c t

We consider steady two-dimensional free-surface flows past submerged obstructions on the bottom of a
channel. The flow is assumed to be irrotational, and the fluid inviscid and incompressible. Both the effects
of gravity and surface tension are considered. Critical flow solutions with subcritical flow upstream and
supercritical flow downstream are sought using fully nonlinear boundary integral equation techniques
basedon theCauchy integral formula.When a second submergedobstruction is included further upstream
in the flow configuration in the absence of surface tension, solutions which have a train of waves trapped
between the two obstacles before the critical flow have already been found (Dias and Vanden-Broeck
2004 [2]). We extend this work by including the effects of surface tension. Trapped wave solutions are
found upstream for small values of the Bond number, for some values of the Froude number. Other types
of trapped waves are found for stronger tension when the second obstruction is placed downstream of
the hydraulic fall generated by the first obstacle.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of a free-surface flow past a disturbance in a chan-
nel, is awidely studied area in fluidmechanics. There aremanynat-
urally occurring physical situations that such a problem canmodel,
as the disturbance can take one of many forms: a fully submerged
obstruction at the bottom of the channel, e.g. the flow generated
by a rock on a river bed, a submerged obstruction not touching
the channel bottom such as a submarine moving under water, a
surface piercing obstruction, e.g. the flow due to a ship moving
through water, or a localised pressure distribution on the free sur-
face (see Părău and Vanden-Broeck [1]), e.g. atmospheric distur-
bances caused by high winds. Both steady and unsteady solutions
to this problem are known to exist, but we consider just the steady
case. We concentrate our attention on flow past submerged ob-
structions.
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Solutions for the pure gravitywaveproblemhave beenobtained
using fully nonlinear methods. In the case of a single submerged
obstacle on the bottom of the channel, four different types of basic
solutions are known to exist (Dias and Vanden-Broeck [2]). These
solutions depend on the Froude number F , defined by

F =
U

√
gH

(1)

where U is the downstream velocity of the fluid, g is the
gravitational acceleration, and H is the downstream depth of the
fluid.When F > 1 the flow is said to be supercritical, andwhen F <
1, subcritical. We also define the upstream Froude number Fup, by

Fup =
V

√
gh

(2)

where V is the upstream velocity of the fluid, and h is the upstream
fluid depth. The first type of basic solution is then classified as
having uniform supercritical flow both up and downstream of the
obstacle, with a forced solitary wave over the obstruction. If the
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obstacle itself has vertical symmetry about its centre, the free sur-
face will then also be symmetric about the obstacle. The second
type is subcritical and consists of a uniform flow upstream, with
a train of waves downstream of the obstacle. For both these solu-
tions, the mean depth of the fluid in the linearised theory, is the
same both up and downstream. Forbes and Schwartz [3] used a
boundary integral technique to obtain type one and two solutions
for flow over a semi-circular obstruction. Vanden-Broeck [4] then
found that flows of type one are not unique. There exist two so-
lutions for particular values of the Froude number; a perturbation
from a pure solitary wave, and a perturbation from the uniform
stream.

The last two types of flow are critical. The first is a hydraulic
fall, which consists of a subcritical uniform flow upstream, with a
gradual increase in the Froude number over the obstacle, result-
ing in supercritical uniform flow downstream. The change in the
Froude number from subcritical to supercritical means that the
depth of the fluid decreases over the obstacle as we travel down-
stream. Forbes [5] computed such a flow configuration over a semi-
circular obstacle using boundary integral equation techniques, and
Dias and Vanden-Broeck [6] used a series truncationmethod to ob-
tain solutions over a triangular obstacle. It was found that as the
size of the obstacle increased, the downstream Froude number in-
creased, while the upstream Froude number tended to zero.

Generalised hydraulic falls were first computed numerically by
Dias and Vanden-Broeck [2]. These are like hydraulic falls but with
a train of waves upstream of the obstacle. However, this final type
of solution is unphysical when considered as the free-surface flow
over a single obstruction, as it does not satisfy the radiation con-
dition, requiring that there is no energy coming from infinity (and
thus, no waves upstream of the obstacle). Hydraulic falls have only
been observed with subcritical flow upstream. The direction of the
flow for the generalised hydraulic fall can therefore not simply be
changed, so that the flow upstream is uniform and supercritical, in
order to satisfy the radiation condition. However, Dias andVanden-
Broeck [7] have shown that this flow can become physically rele-
vant, when considered as the localised flow over an obstacle, in
a configuration involving at least one other obstacle further up-
stream. The free surface they obtained is a hybrid solution of the
second type of basic flow over the obstacle upstream and the gen-
eralised hydraulic fall over the second obstacle. Such solutions over
multiple obstructions have also been observed experimentally, for
example, by Pratt [8] who found that the length and amplitude of
the trapped waves between the two obstacles remains unchanged
when the distance between the obstacles is increased. Only the
number of waves between the obstacles changes. Pratt also found
that the solution is characteristic for different shaped obstacles.
The shape of the obstacle affects only the amplitude and wave-
length of the trapped waves.

Binder, Dias andVanden-Broeck [9] used bothweakly nonlinear
and fully nonlinear techniques to consider the possible configura-
tions for flow past two submerged obstructions. They found solu-
tionswhich have a train ofwaves upstreamof the first obstacle, but
uniform subcritical flow between the obstructions, and supercriti-
cal uniform flow downstream of the second obstruction. Although
not physically relevant due to violating the radiation condition,
they noted that such solutions could be made physically relevant,
by introducing further obstacles upstream. Belward [10] looked at
the solutions obtainedwhen a second obstacle occurs downstream
of the hydraulic fall. A forced solitary wave exists over the down-
stream obstacle, and Belward found that the speed of the flow is
almost entirely determined by the hydraulic fall.

There are fewer studies which include the effects of surface
tension. To characterise gravity–capillary waves, we introduce the
Bond number

τ =
T

ρgH2
. (3)

Here T is the value of the tension on the free surface and ρ the den-
sity of the fluid. Forbes [11] obtained fully numerical solutions for
flow over a semi-circular obstacle when the effects of both gravity
and surface tension are included. As well as obtaining solutions of
type one, Forbes obtained solutions with a train of capillary waves
upstream, and gravitywaves downstream. Grandison and Vanden-
Broeck [12] also studied this type of solution, and removed the in-
accuracies in the solutions caused by truncation of the flow both
up and downstream.

Maleewong, Asavanant and Grimshaw [13,14] used both fully
and weakly nonlinear methods to examine the forced solitary
waves produced by a positively and a negatively orientated sin-
gle applied pressure distribution. However, they restricted their
study to the first type of basic solution, in the presence of a
single disturbance. Page, Părău and Grandison [15] then studied
gravity–capillary forced solitary waves generated by two localised
pressure distributions, and Guayjarernpanishk and Asavanant [16]
included the effects of surface tension in their study, and found ba-
sic flows of types one, two and three. In this paper, we include the
effects of surface tension, and consider types three and four of the
basic solutions; hydraulic falls and generalised hydraulic falls, as
well as the effect of a second disturbance in the channel.

In the next section, we mathematically formulate the problem.
The results are presented in Section 3, and in the final section,
Section 4, we conclude with a summary of our results.

2. Formulation

We consider the free surface of an inviscid, incompressible fluid
flowing along a channel. The flow is assumed to be steady and
irrotational, and is subject to gravitational acceleration in the neg-
ative y∗-direction. On the channel bottom there exists one or mul-
tiple submerged obstructions. We introduce Cartesian coordinates
x∗, y∗ and align the x∗-axis so that it is parallel to the bottom of the
channel, with the y∗-axis directed vertically upwards, through one
of the obstructions.

We let y∗(x∗) = H + η∗(x∗) define the free-surface elevation,
and take y∗

= B∗(x∗) to be the function describing the bottom of
the channel. The flow is assumed to be uniform in the far field,
as x∗

→ ±∞, with constant depth H , and constant velocity
U downstream, and constant depth h and constant velocity V
upstream. The downstream Froude and Bond numbers are then
given by Eqs. (1) and (3) respectively. The upstreamFroudenumber
is given by Eq. (2), and we introduce the upstream Bond number

τup =
T
ρgh2

. (4)

To continue, we non-dimensionalise by taking U as unit velocity,
and H as unit height. Non-starred variables are thus now under-
stood to be dimensionless. We define the dimensionless upstream
velocity by γ , and so using conservation of mass, the dimension-
less upstream depth is h

H =
1
γ
. The dimensionless fluid system is

shown in Fig. 1.
The problem is formulated as a system of nonlinear equations

in terms of the velocity potential φ(x, y), which, must satisfy
Laplace’s equation in the flow domain

φxx + φyy = 0 (5)

and the corresponding boundary conditions. The kinematic
conditions on the free surface y = 1+η(x) and the channel bottom
y = B(x) are

φy = φxηx and φy = φxBx (6)

respectively. Applying Bernoulli’s equation on the free surface, we
obtain the dynamic boundary condition

φ2
x + φ2

y +
2
F 2

y =
2
F 2
τκ + 1 +

2
F 2

(7)
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