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a b s t r a c t

The infiltration of liquid into a gas saturated porous network is investigated. Particular attention is paid
to the situation in which a pressure gradient in the porous medium drives a gas flow upwards, while
a more dense liquid infiltrates down into the reservoir due to gravity. There are two flows in opposite
directions. Amodel is proposed, based upon a compressible gas phase and an incompressible liquid phase.
The volume fluxes in each phase are assumed to be governed by Darcy type flow laws, modified to include
the permeability caused by both the solid matrix and the impeding of the gas flow by the liquid phase.
Isothermal flows are examined in the absence of phase changes. The proposed model is an extension
of the traditional Buckley–Leverett model and is used to consider a variety of flows, including carbon
sequestration in a porous medium below the seabed and rainfall infiltration into a lava dome.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Liquid infiltration into a gas filled porous medium will be
investigated. A background pressure gradient will be applied
across the porous medium, which drives the gas upwards. The
imposed pressure gradient will be insufficient to overcome the
effect of gravity on the heavier liquid, setting up counter-current
fluid flows as the liquid descends and the gas rises. The effect of
the pressure gradient on the gas will be investigated (see Fig. 1).

The infiltration of a fluid into a porous medium is an impor-
tant process which occurs in many geophysical and industrial
situations, including liquid infiltration into soils [1,2], heat ex-
changers [3,4] and filtration processes [5] as well as biological pro-
cesses such as fluid flow in the lungs [6,7]. Generally, when such
a fluid infiltrates the porous media, it displaces a second fluid
that was occupying the void spaces. This displacement can take
place by one of two distinct mechanisms. One mechanism is when
both fluids completely saturate distinct adjacent regions (on the
macroscale) with a mobile interface between the two regions. The
second mechanism is that one fluid can displace only a propor-
tion of the second fluid at the macroscale. In this case the fluids
co-exist in a state of partial saturation. Of the latter type, Buckley
and Leverett [8] began the study of partial saturation of a porous
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medium and employed the additional assumptions that the pro-
cess is isothermal and that both fluids are incompressible. The as-
sumption of incompressible fluids is best suited to the case where
one liquid is infiltrating a reservoir initially saturated with a sec-
ond liquid. An example of this process is sea water seeping into
an oil reservoir. With these assumptions a single partial differen-
tial equation, now called the Buckley–Leverett equation, governs the
flow of both fluids. This is a hyperbolic partial differential equation
for the saturation of the void-spaces by one of the fluids. Under
these theoretical simplifications this equation possesses solutions
corresponding to a sharp saturation front which propagates into
the porousmedium. This analysis has been subsequently reviewed
bymany authors including Bear and Bachmat [9] and Kaviany [10].

In addition to gravity, capillary suction can have a significant
affect on liquid infiltration. Richards [11] investigated the influence
capillarity has on liquid infiltration in soils, and the equation
derived is now known as Richards’ equation. In the derivation
of Richards’ equation it is assumed that the liquid infiltration is
driven by capillarity and gravity, while the second fluid phase
occupying the unsaturated void-spaces is largely inert and does not
affect the evolution. Richards’ equation has been widely studied
for its practical applications and also as an example of degenerate
parabolic partial differential equations [12,13].

If the problem of liquid infiltrating a pressurized gas-saturated
porous medium is investigated, then the assumption of incom-
pressibility may be justified in the liquid. However, due to the
pressurization of the reservoir, the gas should be modelled as
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Fig. 1. A schematic diagram of the problem of interest showing liquid infiltrating
into a gas filled porous medium. A counter-current flow is established due to phase
density differences, gravity and an existing background pressure gradient.

compressible. Therefore generalizations of the models of Buckley
and Leverett [8] and Richards [11] are sought, in which one of the
fluids present is compressible. Interactions between the different
fluid phases occur due to the pressure gradients presented. Our
work is motivated by situations in which a liquid is infiltrating
a gas-filled porous medium. This situation could arise as the re-
sult of carbon sequestration (as part of carbon capture and stor-
age schemes), where pressurized carbon dioxide is stored in an
exhausted natural gas field [14,15]. Several exhausted gas fields
are found under bodies of water (such as the North Sea); it is pos-
sible that if the integrity of the reservoir becomes compromised,
then seawater may infiltrate the reservoir, releasing carbon diox-
ide [16,17]. Models of liquid infiltration into porous media are also
of relevance to understanding the processes associated with hy-
draulic fracturing, which attempts to release hydro-carbon based
gases trapped within a porous medium by creating new pathways
through which the gas can escape by forcing a liquid into the ex-
isting pore spaces at very high pressures [18,19].

There has also been recent interest in the interactions of rainfall
and volcanic lava domes as the result of a series of dome collapses
after periods of intense rainfall at the Soufrière Hills Volcano,
Montserrat [20–22]. A high pressure build-up below the surface
of the dome, caused by rainwater infiltrating the void spaces
of the dome and interacting with the escaping magmatic gases,
may contribute to dome collapse [23,24]. In the case of liquid
infiltration into both a pressurized porous medium sequestered
with carbon dioxide and a lava dome, the pressure gradient across
the saturation interface, gravity and the difference in densities
between liquid and gas phases may induce counter-current flows,
in which liquid falls predominantly due to its weight, whereas the
gas is driven upwards by the dominant influence of the pressure
gradient. Across many areas of the surface of a lava dome the
measured temperatures are high enough to rapidly boil rainwater
landing upon it [25]. This continues until sufficient energy has been
expended in boiling water to quench the surface temperature to
below boiling point [26,23]. For temperatures below the boiling
point of water there will be a descending saturation front at which
the temperature equals the boiling point, and above which the
temperature is less than or equal to the boiling point. In this
situation boiling will reduce the volume of liquid in the porous
medium, slowing the front advancement.

Thermal effects are also prevalent in carbon sequestration,
where the Joule–Thomson effect acts to cool the gas as it is
forced through a porous medium [27,28]. In this case the carbon
dioxide may be cooled to the extent that the liquid freezes, which
would significantly alter the progress of the front. Carbon dioxide
dissolution will occur through interactions between liquid water
and gaseous carbon dioxide. The resulting aqueous carbon dioxide

solution will increase the liquid acidity and (depending on the
rock type) produce porosity and permeability reducing mineral
precipitates [29,30]. Additionally, depending on the carbon dioxide
concentration and the ambient conditions, the viscosity of an
aqueous carbon dioxide solution can differ from that of pure water
by up to 38% [31]. As a preliminary investigation into counter-
current flows driven by a combination of phase density differences,
gravity and a background pressure gradient, an idealized problem
is considered in a uniformly porous and permeable material, in
which all the processes are isothermal and there are no phase
changes. However, once our initial model of counter-current flows
has been developed, then it can be extended to include these
additional effects and be specifically tailored to model either
carbon sequestration or rainwater infiltration.

To further simplify the problem, fluid flows will be considered
only in one spatial dimension, which will be aligned parallel
to gravity. A schematic diagram of the situation of interest is
shown in Fig. 1. However, if additional spatial dimensions aligned
parallel to the infiltration front are considered, then flows of this
type commonly exhibit viscous fingering as an initially planar
infiltration front descends and becomes unstable. In the context
of rainwater infiltration into a lava dome, the front is unlikely to
propagate too far below the surface. Here a one dimensionalmodel
is likely to be appropriate as the initially planar front has not had
sufficient opportunity to become unstable. In the context of the
Buckley–Leverett problem the stability of a planar saturation front
has previously been studied by many authors including Tan and
Homsy [32], Chikhliwala et al. [33] and Riaz and Tchelepi [34].
However, the stability analysis of the current situation remains an
open problem and is worthy of further study.

In Section 2, a system of equations governing the conservation
of mass and momentum of a liquid and gas in a partially saturated
region is described. Boundary conditions are considered, which
naturally give rise to a pressurized upwards gas flow and a
counter-current liquid flow. Steady-state solutions and the initial
configuration for the gas profile are considered in Section 3, before
the resulting system is investigated with andwithout capillarity in
Sections 4 and 5, respectively. Changes to the degree of saturation
at the surface and the underlying gas pressure gradient are
considered. In the absence of capillarity the regime of small gas
pressure gradient is investigated in Section 4.2, and the behaviour
simplifies to that which has been previously reported. Finally,
Section 6 contains conclusions and analysis resulting from the
modelling.

2. Model development

We consider liquid infiltration and descent into the void spaces
of an initially completely unsaturated gas-filled porous medium.
Across the porous medium there is a vertical pressure gradient,
which drives an upward gas flow. A system of coordinate axes
is chosen, in which the z-axis is parallel to the pressure gradient
and positive in the upwards direction. The porous medium lies
between surfaces at z = 0 and z = −H . Between z = 0 and z =

−L a pressure difference exists and in an initial dry configuration
this is denoted by


Pg


, with a constant pressure Pg,0 at z = 0 and

L < H . Attention is restricted to the case in which the two fluid
phases are immiscible and phase change between the fluids does
not occur.

2.1. Field equations

The mass flux of gas per unit cross sectional area of the porous
medium m̃g is then related to the gas volume flux per cross
sectional area of void-space ṽg , through the relationship

m̃g = φρ̃g (1 − s) ṽg , (1)
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