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a b s t r a c t

Our purpose is to develop a new goal oriented method based on the total derivative of the goal with
respect to (w.r.t.) volumemesh nodes. The asymptotic behavior of this derivative as the characteristic cell
size tends to zero is first studied. This behavior is assessed using numerical simulations on a hierarchy of
meshes. Goal oriented criteria of mesh quality are then proposed based on the same derivative and the
local characteristic cell length. Their relevance is assessed using several families of parametrized meshes.
The criterion succeeds in sorting the bettermeshes for goal evaluation from theworse. Finally a localmesh
adaptation strategy is proposed and validated. All demonstrations are done for 2D structuredmesheswith
finite-volume schemes and cell-centered approach in the case of Eulerian flow computations.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

In aeronautical CFD, engineers require accurate predictions
of the forces and moments but they are less concerned with
flow-field accuracy. Hence, the so-called ‘‘goal oriented’’ mesh
adaptation strategies have been introduced to get satisfactory
values of functional outputs at an acceptable cost, using local
node displacement and insertion of new points rather than mesh
refinement guided by uniform accuracy. Most often, suchmethods
involve the adjoint vector of the function of interest.

The objective of this study is three-fold: we first study the
asymptotic behavior of the total derivative of the goal w.r.t.
volume mesh coordinates as characteristic cell size tends to zero
(Section 2). This asymptotic behavior is verified on a hierarchy
of meshes (Section 5). We then try to qualify the meshes that
are well suited for the computation of J (the output of interest)
based on one scalar indicator and to derive a corresponding local
mesh refinement indicator, both global and local criteria being
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based on the previously mentioned total derivative of the goal
(denoted J) w.r.t. the volume mesh coordinates (denoted X). Until
now the Venditti and Darmofal method is the major reference
on the last subject for finite-volume methods [1–3]; it has been
applied by many authors but has the drawback to require two
levels of meshes. For finite element methods, many goal oriented
mesh adaptation methods have been developed since the 1990s.
Important contributions include the articles of Johnson and co-
workers [4–6], Giles and co-workers [7], Prudhomme andOden [8],
Larson and Barth [9], Machiels et al. [10], Hartmann and co-
workers [11–13] and Alauzet, Dervieux and co-workers [14]. The
search for a criterion using the adjoint vector on a unique level
of mesh was rarely considered in the literature. However we can
notice the contribution of Dwight [15,16] in which only one level
of mesh is necessary but is limited to the classical Jameson et al.
numerical scheme [17].

1.1. State of the art on goal orientedmesh adaptation for finite volume
schemes

A recent detailed state of the art about output-based error
estimation and mesh adaptation can be found in the review
by Fidkowski and Darmofal [18]. This article covers both finite-
element and finite volume methods. Here, a short presentation of
classical adaptation methods for finite-volume schemes is made.
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Nomenclature

AoA Angle of attack
B Linear interpolation operator in the reference fine

mesh
c Chord of airfoil
C Computational space C = [0, 1]2 (resp. C = [0, 1]3)

in 2D (resp. 3D)
CDp, CDw, CDsp Pressure drag coefficient, wave drag coeffi-

cient and spurious drag
dsij Surface element attachable to the point Xij
dX, dXC Admissible mesh variations and regular function

such that dXij = dXC(Xij) ∀i, j ∈ {1,Ni}{1,Nj}

D Physical space D ⊂ R2 (resp. D ⊂ R3) in 2D (resp.
3D)

D(Xij,L) Disk of radius L centered in Xij

e⃗∞ Unit vector tangential to the upstream velocity
F (2) Two-point Euler inviscid flux formula
F (4) Four-point Euler inviscid flux formula
F J Jameson flux formula
F Euler inviscid flux density
gi, g i Covariant and contravariant base vectors
gij, g ij Covariant and contravariant metric tensors
H, h Characteristic mesh size of coarse (H) and fine (h)

grid
i, j(, k) Mesh indices of a 2D (resp. 3D) mesh
ī, j̄(, k̄) Reduced mesh indices in [0, 1]2 (resp. [0, 1]3)
J Aerodynamic objective function as a function of

volume mesh
J Aerodynamic function as a function of flow field and

volume mesh
J Aerodynamic function as a function of a vector of

design parameters
k(2), k(4) Artificial dissipation coefficients of Jameson et al.

scheme
L Characteristic size of a mesh deformation
M∞ Mach number of far-field flow
nµ Number of design parameters
n⃗ Normal vector to solid wall, support of J or outer

boundary
Ni,Nj Number ofmesh lines of the structuredmesh in each

direction
NW Size of vectorsW and R
p, p∞ Static pressure and static pressure of far-field flow
pa, pa∞ Stagnation pressure and stagnation pressure of far-

field flow
P Parametric space P = [0, 1]2 (resp. P = [0, 1]3) in

2D (resp. 3D)
Pa Mean stagnation pressure over airfoil contour
Pk,Pk

ij Control functions associated to the kth topological
direction only and to the kth topological direction
and the node (i, j)

P (dJ/dX) Projection of dJ/dX canceling components or-
thogonal to function support and solid walls

P (dJ/dX) Spatial mean of P (dJ/dX)
r Reference variable of the Taylor expansion
R Finite-volume flux balance
s Sensor scalar field
s(1), s(2), s(3) Sensor fields connected to specific geometrical

directions
S Solid body surface mesh
S = (SX , SZ ) Interfaces surface vectors
W Conservative variables (discrete)
w Continuous flow-field
X Volume mesh

α, β, δ, φ Parameters of the mesh families
γ Specific heat ratio
γijL Discrete estimation of the part of disk centered in

the node Xi,j that is included in the fluid domain
Γ Airfoil contour (length L(Γ ))
θ Criterion based on P (dJ/dX)
Λ Adjoint vector of J (Jk) for scheme R
λ Continuous limit ofΛ as the mesh size increases
µ Vector of design parameter
Φ Mapping function from [0, 1]2 to [0, 1]2
θ Criterion based on a spatial mean of P (dJ/dX)
χNi,Nj(,Nk) Linear function mapping [0, 1]2 (resp. [0, 1]3) in

[1,Ni] × [1,Nj] (resp. [1,Ni] × [1,Nj] × [1,Nk])
ΨL Radial function of support D(0,L)

In a series of three articles [1–3], Venditti and Darmofal have
proposed similar formulas for the specific case of finite differences/
finite-volume and discrete adjoint, and presented applications to
compressible flow computations. Let us define the basic notations
employed here for finite-volume CFD computations:W is the flow
field (size NW ), X is the volume mesh and R is the residual of the
scheme. At steady state, these variables satisfy R(W , X) = 0 (set
of NW nonlinear equations to be solved for W ). R is supposed to
have C1 regularity w.r.t. its two vector arguments. The method
involves two grids: a coarse one of characteristic mesh size H , and
a fine one of characteristic mesh size h. The full computation of
the flow field and the output of interest on level H is supposed
to be affordable, whereas it would be prohibitively expensive
on level h. The subscripts h and H will be attached to R, X and
W . Finally, WH

h and λHh represent the coarse-grid flow-field and
adjoint vector reconstructed on the fine grid via some consistent
projection operator. Taylor’s expansion of the functional output of
interest Jh about the interpolated coarse-grid solution writes:

Jh(Wh, Xh) = Jh(WH
h , Xh)+


∂J
∂W


WH

h


(Wh − WH

h )

+ O(∥Wh − WH
h ∥

2).

After solving an adjoint-like equation on the fine grid (1), Taylor’s
expansion of R about WH

h writes:

(Λh|WH
h
)T


∂Rh

∂Wh


WH

h


= −

∂Jh
∂Wh


WH

h

(1)

Jh(Wh, Xh) = Jh(WH
h , Xh)− (Λh|WH

h
)T


∂Rh

∂Wh


WH

h


(Wh − WH

h )

+ O(∥Wh − WH
h ∥

2)

= Jh(WH
h , Xh)+ (Λh|WH

h
)TRh(WH

h )

+ O(∥Wh − WH
h ∥

2). (2)

If the flow computation is not affordable on the fine grid, neither is
the solution of Eq. (1) for (Λh|WH

h
). An alternative is to replace this

adjoint field by the interpolated coarse-grid adjoint,

Jh(Wh, Xh) ≃ Jh(WH
h , Xh)+ (ΛH

h )
TRh(WH

h )  
computable correction

+ ((Λh|WH
h
)T − (ΛH

h )
T )Rh(WH

h )  
error in computable correction

.

The authors recommend to take Jh(WH
h , Xh) + ΛH

h Rh(WH
h ) as the

function estimate and adapt the mesh by reducing uniformly the
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