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a b s t r a c t

In this paper we propose a model to study the phenomenon of phase separation during lava flow. Lava is
considered as a mixture of two incompressible fluids with different density, in that the mass density of
the mixture is determined by the concentrations of the two constituents.

We consider as state variables the order parameter, describing the difference in concentration of the
fluids, the velocity of the mixture and the absolute temperature. We assume that the order parameter
satisfies a Cahn–Hilliard equation, where the chemical potential depends on the velocity and we model
lava as a Bingham fluid whose apparent viscosity and yield stress increase exponentially as temperature
decreases, according to experimental data. The heat equation provides the evolution equation for
temperature. We prove that this model is consistent with the principles of thermodynamics.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Lava flows are currents of molten or partially molten rocks that
run down the slope of a volcano driven by gravity and cool as they
flow gradually solidifying until they come to rest. The rheological
properties of lavas are of great importance in controlling the
dynamics of lava flows. They are strongly temperature dependent
and therefore change severely with the cooling of lava after the
effusion.

During the early stages, lava is considered as a viscous fluid and
its flow is commonly modeled as Newtonian and laminar [1]. But,
far from the vent, as a consequence of its cooling, lava behaves as
a Bingham fluid, which is characterized by two parameters: the
apparent viscosity ν and the yield stress s [2]. The existence of
an yield stress can be ascribed to an internal structure which is
capable of preventingmovement for values of shear stress less than
the yield value. Above this value, the internal structure collapses
and shearing movement is allowed to occur. Experimental data
and theoretical considerations show that temperature has a strong
influence on viscosity and yield stress [3,4]. Indeed, as lava flows
away from its vent, it loses heat by radiation into the atmosphere
and conduction toward the ground and atmosphere, and ν, s
steadily increase.

Lava is a multiphase system which during the cooling process,
changes its physical properties. In this paper we focus our atten-
tion on the phenomenon of phase separation during lava flow
for temperatures above the solidus temperature, that is, the tem-
perature at which lava begins to solidify. After the effusion, as a
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consequence of high temperatures, the species composing lava are
in a mixed state, but when the temperature goes down a critical
value θ0, they may separate into distinct regions. This mechanism,
called spinodal decomposition or phase separation, has been de-
velopedprimarily by Cahn andHilliard [5] in ametallurgical frame-
work. Later, in recent years, it has been extended to other contexts.
In particular, many authors have investigated the spinodal decom-
position induced by variations of the temperature or the velocity
(see [6–10] and references therein).

For sake of simplicity, we suppose that lava is a mixture of two
incompressible fluids with the different density and viscosity.

The phase separation is often described in the framework of
phase-field modeling, in that the interface between the two pure
phases is not sharp but is regarded as a region of finitewidth having
a gradual variation of different physical quantities. Such a thin layer
is called diffuse interface. Following the phase field approach [11],
we assume a partial mixing between the two immiscible fluids in
the diffuse interface and we introduce a scalar function ϕ, called
order parameter, which allows us to distinguish one phase from
the other and which varies smoothly within the diffuse interface.

The paper is organized as follows. In Section 2 we introduce
the order parameter ϕ and we postulate that ϕ obeys a balance
equation of Cahn–Hilliard type, where the chemical potential
depends on the velocity in such a way that an increase in the
velocity improves the miscibility of the mixture. In Section 3 we
introduce the evolution equation for the velocity, modeling lava
as a Bingham mixture of two incompressible components. The
apparent viscosity and the yield stress are supposed to increase
exponentially as temperature decreases. Section 4 is devoted to the
heat equation. Finally, in Section 5 we prove the thermodynamical
consistence of the model.
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2. Binary mixture of incompressible constituents

Lava is not a simple liquid but it is generally amixture of silicate
liquids, crystals, and gas bubbles. For sake of simplicity, we model
lava as a mixture of only two incompressible fluids A and B whose
intrinsic densities ρA, ρB are constant under standard conditions of
temperature and pressure.We assume that ρA ≠ ρB. We denote by
ρ the density of lava.

Denoting by vA, vB the velocity of the fluids A and B respectively,
the mean velocity v is defined by

ρv = ρAvA + ρBvB.

We suppose that after the effusion the total amount of lava is
contained into a fixed domainΩ ⊂ R3. Let m be the total mass of
lava inΩ , i.e.

m =


Ω

ρ dv

and let mA,mB be the total masses of each component in Ω .
Accordingly, m = mA + mB. We introduce the apparent densities
ρ̃A, ρ̃B of the two compounds A and B defined through the relations

mA =


Ω

ρ̃Adv, mB =


Ω

ρ̃Bdv.

Notice that the adjective ‘‘apparent’’ is used to emphasize that
we are considering the integral over the total domain Ω , rather
than over the domain occupied by the constituent A or B. As a
consequence,

ρ = ρ̃A + ρ̃B. (1)

Accordingly, the ratio ρ̃i/ρi, i = A, B denotes the volume fraction
of the substance i and hence the following equality holds:

ρ̃A

ρA
+
ρ̃B

ρB
= 1. (2)

Once lava leaves the eruption vent and flows down the slopes of
a volcano it suddenly quenches to a lower temperature and enters
a level where it can no longer exist in equilibrium in its original
homogeneous state. The two compounds begin to separate and
form A-rich and B-rich fluid domains. During this phenomenon the
total amount of each species in the whole domain must remain
equal to the given original amount.

In contrast to two fluids approach, we consider the mixture
as a single system obeying the laws of conservation of mass
and linear momentum of continuum mechanics and we associate
to each particle of the matter an additional scalar function ϕ,
called order parameter, which varies continuously throughout Ω
and describes the phase of the material (see [12,11,13,14] and
references therein). For instance, we define ϕ as the concentration
difference between the two components of the mixture, that is

ϕ = ϕA − ϕB =
ρ̃A − ρ̃B

ρ
,

where ϕi = ρ̃i/ρ, i = A, B denotes the mass concentration of the
fluid i. The equality

ϕA + ϕB =
ρ̃A + ρ̃B

ρ
= 1

leads to

ϕA =
1 + ϕ

2
, ϕB =

1 − ϕ

2
. (3)

It is apparent from equality (1) that ϕ ∈ [−1, 1]. In particular,
ϕ = 1 wherever only the component A occurs and ϕ = −1 in
regions where only the fluid B appears.

Furthermore, the definition of ϕ guarantees that the concentra-
tion difference of the two components is conserved in Ω as the
system evolves. Indeed, recalling the definition of ρ̃A and ρ̃B, we
have
Ω

ρϕ dv =


Ω

(ρ̃A − ρ̃B)dv = mA − mB = constant.

Unlike the two fluids model, in the diffusive approach the
fundamental fields of the model are ρ, v, ϕ, rather than ρA, ρB,
vA, vB (see [15] for instance).

In our paper, we assume that the mixture, which is com-
pounded by two incompressible fluids, is compressible, namely the
density ρ may be not constant and may change owing to varia-
tions in the concentration parameter ϕ. We refer to the mixture as
a quasi-incompressible fluid. For this reason, ρ is no more an inde-
pendent variable, but it is a function of ϕ. In particular, (2) and (3)
imply

1
ρ

=
1 + ϕ

2
·
1
ρA

+
1 − ϕ

2
·
1
ρB
,

which implies

ρ =
2ρAρB

(ρA + ρB)− ϕ(ρA − ρB)
. (4)

The assumption ρA ≠ ρB assures that the density is not constant.
In order to guarantee the conservation of the total concentra-

tion over the whole domain, following [5,10] we postulate that ϕ
obeys the diffusion equation

ρϕ̇ = ∇ · J, (5)

where J satisfies the boundary condition

J · n|∂Ω = 0. (6)

In view of the transport and divergence theorems, we have the
following equalities:

d
dt


Ω

ρϕ dv =


Ω

ρϕ̇ dv =


∂Ω

J · n da = 0.

As customary, we assume that the flux J satisfies the Cahn–
Hilliard law

J = M(ϕ)∇µ,

where M(ϕ) denotes the mass diffusivity which is supposed to be
positive andµ is the chemical potential. In particular, the boundary
condition (6) is equivalent to

∇µ · n|∂Ω = 0.

The phenomenon of phase separation may be induced both by
variations in the temperature and in the velocity. In addition, since
the density of the mixture is not constant, the chemical potential
depends explicitly on the pressure p. Thus, we assume that

µ = −
γ

ρ
∇ · (ρ∇ϕ)−

p
ρ2
∂ϕρ + θ0F ′(ϕ)+ (θ + λv2)G′(ϕ), (7)

where γ , θ0 and λ are positive constants and F ,G are suitable
potentials characterizing the transition. In particular, we let

F(ϕ) =
(ϕ − ϕ0)

4

4
−
(ϕ − ϕ0)

2

2
, G(ϕ) =

(ϕ − ϕ0)
2

2
,

where

ϕ0 =
mA − mB

mA + mB
.

It is worth noting that if ϕ = ϕ0, then the ratio ρ̃A/ρ̃B coincides
with the ratio of the masses of the two fluidsmA/mB.
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