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1. Introduction

Due to the tremendous computational power available through
high performance computing, simulation is getting more and more
importance in various domains such as process manufacturing,
process engineering, and security in industry. In particular, sim-
ulation users would like computational fluid dynamics (CFD) tools
to be able to handle a very wide range of flows. Among them, there
are multi-fluid or even multi-material flows. These of course in-
clude compressible flows. For example, in the classical case of air
and water flows, the compressibility of water being much smaller
than that of air, a solver for such flows should be able to handle
both moderate and low Mach number flows.

The use of an incompressible solver does not fulfill every expec-
tation. Compressible phenomena associated with important ther-
mal effects, as well as shock waves, may occur at very low Mach
number flows, that is, when the fluid velocity is low compared to
the speed of sound. There are then two strategies. The first is to ex-
tend a solver for incompressible flows (zero Mach number, M = 0)
to moderate and low Mach numbers flows, while the second is to
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extend a solver for compressible flows designed for high and mod-
erate Mach numbers to low Mach numbers, let us say M < 0.1.
The second strategy, which we adopt in this article, should lead to
a more general simulation tool, since it allows for the full range of
Mach numbers.

Most of the modern compressible fluid flows solvers, in par-
ticular those designed for dealing with complex geometries, are
based on upwinding to achieve numerical stability: Godunov [1]
and Roe [2] schemes, see e.g. Godlewski and Raviart [3], are
the well-known pioneering works for compressible external flows
in aeronautics. However, as analyzed by Turkel [4,5], upwinding
induces too much diffusion as the Mach number tends to 0. This
phenomenon was further analyzed by Guillard and Viozat [6] and
Guillard and Murrone [7]. All these authors propose a modification
of Roe’s scheme in order to capture the right solution. Turkel has
proposed a non-consistent in time modification of Roe’s scheme
which allows one however to capture a consistent stationary so-
lution, while Guillard and his co-authors have extended Turkel’s
approach to obtain fully consistent solvers. More recently, Del-
lacherie [8] and Li [9] have extended these works in the context
of single fluid flows.

An asymptotic development of the numerical schemes allows
one to identify the continuous equations satisfied by their so-
lutions. These limit equations show pressure fluctuations of the
order of the Mach number, while, at the continuous level, an-
other asymptotic analysis underlines the fact that the pressure
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fluctuations scale with the square of the Mach number [6-9].
Therefore, cell-centered schemes (like Godunov’s or Roe’s) fail in
rendering accurate solutions as the Mach number becomes too
small. Most solutions to this problem use preconditioning tech-
niques (stemming from Turkel’s work) that consist in modifying
the numerical fluxes so as to improve the condition number of
the viscosity matrix [4-7], that is, for an invertible matrix A, the
number « such as ¥ = ||A|| |A™!]], for a given matrix norm || - ||.
However, these modifications directly impact the stability of the
considered scheme. In particular, explicit preconditioned schemes
are unstable in the sense that the Courant-Friedrichs-Lewy condi-
tion is highly restrictive and gives rise to time steps of the order of
the square of the Mach number [10,11].

In this paper, we consider multi-fluid or multi-material non-
miscible flows governed by the compressible Euler equations.
Our goal is to extend the finite volume with the characteristic
flux-enhanced natural interface positioning method [12,13] (FVCF-
ENIP method in the following) to low Mach number flows. This
aforementioned method is a hybrid Eulerian-Lagrangian method,
with sharp interface reconstruction. The fluids present are not
miscible: they all satisfy the compressible Euler equations but each
has its own equation of state. Hence we consider the compressible
Euler equations, written in conservative form (mass, momentum
and total energy) as

ap _
d

(ath)“LV-(pu@blHrpl):pg, 2)
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with the usual notation: p denotes the density, u the velocity field,
E the specific total energy, sum of e, the specific internal energy
and %||u||2, the specific kinetic energy and g is the gravity vector.
The system is closed by equations of state:

p=R(@P,T), e=¢&(p,T), s=4(@,T), (4)

where p and T are the pressure and the temperature. Here, s
denotes the specific entropy, which satisfies Gibbs’ relation Tds =
de — %dp.

The content of the paper is as follows. We recall in Section 2
the original FVCF-ENIP method. Then, according to the aforemen-
tioned fact concerning the stability condition for explicit renormal-
ized low Mach schemes, we derive a fully implicit multi-material
scheme in Section 3. Then this scheme is modified using a renor-
malization technique for which we prove linear unconditional sta-
bility (Appendix A) in the simplified case of a one-dimensional (1D)
isentropic Euler system.

We illustrate the efficiency of our method in Section 4 by
presenting various numerical results. Among them, an important
test case in this context is the simulation of the Kelvin-Helmholtz
instability (Youngs and Williams [14]). Concerning this case, we
also prove analytically that the growth rate of the instability does
not depend on the value of the Mach number (Appendix B). The
paper ends with some concluding remarks and suggestions for
future work in Section 5.

2. The original FVCF-ENIP method

Egs. (1)-(3) are rewritten in the following form:

av

E+V~F(v)=5(v), (5)
where v denotes the conserved variables: v = ‘(p, pu, pE), and
F(v) is the physical flux such that F(v) - v = (p(u-v), p(u-v)u+
pv, (pE + p)(u - v))’ is the normal flux in the direction v € S%1,
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Fig. 1. Construction of a condensate.

d being the physical space dimension, and finally S(v) is a source
term, such as gravity, for example.

As explained above, the underlying method that we use is
the FVCF-ENIP method. This method allows one to compute non-
miscible multi-material flows with sharp interface reconstruction,
and it was designed in order to be strictly conservative for the
conserved variables, that is, mass, momentum, and total energy.
We refer to [12,13] for a complete description of the algorithm in
two dimensions or [15] for the 3D extension. However, its main
features have to be described here.

The FVCF-ENIP algorithm requires the use of a Cartesian grid.
Therefore, system (5) can be solved using a directional splitting and
it then reduces to mono-dimensional subsystems that are solved
by alternating x-y and y-x time step after time step for the sake of
symmetry and time integration stability.

To each cell in the domain, we associate a data structure
containing the amounts of material present in this cell and the
volume fractions of the materials. For each of them, we have the
corresponding values of the conserved variables v. Since we deal
with multi-material flows, the common terminology is used. A cell
is said to be “pure” if it contains only one material, or “mixed” if
there are at least two materials present.

When applying the space-splitting, treating the 2D domain line
by line (or column by column), we generically obtain a 1D object
(that we will call the generic x-line), consisting in a juxtaposition
of pure and mixed cells.

The FVCF-ENIP method mainly relies on the use of a data
structure called the “condensate” [12,13] to deal with mixed cells.
In the condensates, layers of the same fluids in neighboring mixed
cells are agglomerated (namely condensed), or not, according
to their order of appearance in the cell. The order in question
is prescribed by the direction of the unit vector normal to the
interface.

Once the condensates are constructed, the generic x-line con-
sists in a juxtaposition of single material layers with different vol-
umes. At this stage, the edges separating the layers are of two
types: Eulerian (and therefore fixed), when the edge lies between
two cells of the same fluid, or Lagrangian, when the interface sepa-
rates two different fluids. The latter corresponds to material inter-
faces and can be found only in the inner parts of the constructed
condensates.

The construction of a condensate is illustrated in Fig. 1.

Integration of (5) over a time-dependent control volume
Kijie(t) = [x:(6). Xi1 ()] X [¥;. Yjs1] X (2t Zi1], keeping only the
terms corresponding to the derivation in the generic x-direction,
leads to a system of ordinary differential equations:

d“(l‘,j,klvl(,'vj_k
dt
— [iz1/2,jkl@ ik, Ui71,j,k)) = S(Vigj0)- (6)
As usual in finite volume methods, Vi;; ) denotes the mean
. _ 1
value of v on the control volume: Vi) = Ryl fKi.j.k([) v(v, t)dx,
and @(viy1jk, vijkx) denotes the numerical flux at the interface
between volumes K; j  and K1 j . Here, | Iiy1/2j k| is the measure
of the area of the edge located at x;1, = Ntk Eventually,
|Ki+1,j k| is the measure of the control volume Ki 1 j k.
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