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h i g h l i g h t s

• Emergence of instabilities and breaking of symmetry is dependent on Reynolds number.
• Dipoles can persist over more than one cycle and they can interact with each other.
• An asymptotic behavior appears as the Reynolds number increases.
• The integration of equations in 2D permits to recover some observational data.
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a b s t r a c t

We investigate herein a periodically driven flow from a channel into an open domain. For this purpose,
the equations of motion are solved with a pseudo spectral code based on a Chebyshev polynomial for
the spatial coordinates and on a second-order finite difference method for time. During each driving
period, the fluid that leaves the channel forms a coherent structure consisting of a pair of counter-rotating
vortices, also known as a dipole. Dipole features, such as speed, intensity, and stability, depend on two
dimensionless parameters: the Strouhal number and the Reynolds number. In some cases the dipole
lifetime is greater than the driving period, so vortices may interact and even coalesce. The second part
of the paper is devoted to calculating solid-particle trajectories immersed in this flow. For this purpose an
equation deduced from first principles is solved considering drag, addedmass, and history forces.We find
that solid particles accumulate in certain regions and that a fraction of the particles leave the integration
domain.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Westudy a system consisting of a time-dependent flow through
a domain formed by a channel connected to a basin. More pre-
cisely, we introduce a sinusoidal flow rate to mimic tidal-induced
flow.When the fluid flushes from the channel into the basin, a pair
of counter-rotating vortices is formed (known as a dipole). These
systems can be observed in nature at different scales such as the
mouths of rivers flushing into lakes or seas, or in channels connect-
ing marine estuaries or bays with the sea [1].

Analytical, experimental, and observational data are avail-
able for this type of flow. For example, according to an inviscid
model [2], hereafter referred to as the W-H model, if the Strouhal
number S < 0.13 the dipole escapes the channel because the ve-
locity attained after half of the driving period is such that the ac-
tion of flow reversal cannot stop the dipole’s self-propagation. For
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S = 0.13 the dipole remains stationary due to a balance between
self-propagation and suction by the channel. Finally, for S > 0.13
a vortex pair forms and is entrained back toward the channel. In
the aforementioned work the dipole is modeled by two counter-
rotating vortex filaments. Therefore, the dipole moves with a self-
induced velocity of

u =
Γ

2πd
(1)

where Γ is the circulation and d is the distance between vor-
tices [3].

A more realistic model for the dipole is the Lamb–Chaplygin
vortex pair [4–6], which is an exact solution of the Euler equation.
In thismodel vorticity is confinedwithin a circle of radius R0 inside
ofwhich are two finite-sized vortices. Numerical and experimental
evidence indicates that the Lamb–Chaplygin dipole is a good
approximation for moderate Reynolds number.

Nicolau del Roure et al. [7] and Bryant et al. [8] performed
shallow-water laboratory experiments for tidal vortices in a tank
and for four different inlet cases: a barrier island without channel,
short and long jetties, and a barrier island with channel. In these
experiments Nicolau del Roure et al. [7] measured the position of
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vortices, the maximal vorticity, the circulation, and the effective
diameter. They used dye visualization tomake theirmeasurements
and the velocity at the free surface was obtained using particle
image velocimetry (PIV). Their investigation covers a broad range
of Strouhal numbers. For S = 0.13 they find that the dipole
effectively attains a stationary position, but the distance to the
channel is different from that predicted by the W-H model.

Amoroso & Gagliardini [9] studied hydrographic processes in
the San Jose and San Matias Gulfs in Patagonia. Both gulfs are
connected by a narrow channel. They used observational data
provided by the satellite systems of Landsat and the National
Oceanographic and Atmospheric Administration (NOAA). The
maps of free surface circulation reveal the existence of vortices
with lifetimes greater than one tidal cycle; furthermore, trains of
vortices are observed.

The vortices that escape from the channel mouth have a fi-
nite lifetime. They evolve for a while and are finally destroyed.
Nicolau del Roure et al. [7] associate this process to bottom fric-
tion, but other mechanisms are also involved. For example, [10]
analyzed the stability and found a sinusoidal symmetric instabil-
ity in the long-wavelength range. More recently, [11] investigated
the linear stability of the Lamb–Chaplygin dipole with respect to
three-dimensional perturbations for Reynolds numbers of 400 and
10,000. They found that the most unstable mode is asymmetric in
the short-wavelength range. Furthermore, [12] experimentally in-
vestigated the stability of a pair of vortices produced by the rota-
tion of a two flat plates. They focused on modes with wavelengths
ranging from the size of the core vortex to the size of the intervor-
tex spacing. They found that the instability deforms the core,which
agrees well with predictions of the theory of elliptic instability. In
addition, they found that an array of secondary vortices leads to
the destruction of the dipole.

In this paper, we remain within the shallow-water approxi-
mation because the characteristic size of the dipole is sufficiently
greater than the depth of the fluid layer. Usually it is adequate to
consider that the flowproperties dependweakly on the vertical co-
ordinate, except in a thin layer near the bottom.However, evidence
exists that contradicts this hypothesis. For example, [13] produced
adipole by a turbulent impulsive jet in a shallow-water experiment
with Reynolds number between 50,000 and 75,000. Besides a pair
of counter-rotating vortices, they report the emergence of vertical
motion ahead of the dipole. Lacaze et al. [14], Albagnac [15] and
Albagnac et al. [16] reported a similar behavior in a laminar flow;
they produced a dipole by rotating two vertical plates in a rectan-
gular basin. They also observed vertical motion; in fact a spanwise
vortex was detected in front of the dipole.

In the same sense, [17] numerically simulated a dipole in a thin
horizontal layer. As initial conditions, they proposed a velocity field
such as the Lamb–Chaplygin vortex pair in the horizontal plane and
a vertical Poiseuille velocity profile. The two relevant parameters
are the Reynolds number and the aspect ratio δ = H/R0, where H
is the fluid-layer depth and R0 is the radius of the Lamb–Chaplygin
vortex. They found that the three-dimensional nature of the flow
depends on the single parameter K = δ2Re. For K < 6 the flow is
dominated by the viscosity, so the verticalmotion canbeneglected.
In the range 6 < K < 15, the dipole properties are modified by
the vertical motion and a spanwise vortex appears in front of the
dipole. Finally, for K > 15 the three-dimensional nature of the
flow is well developed and the intensity of the spanwise vortex is
comparable with that of vortices in the dipole.

The other aspect we treat in this work is the transport of
particles by the flow. This subject has been investigated exten-
sively in the recent past. Several studies addressed the transport
of particles in flowwith vortices. For example, [18] experimentally
determined the transport during the formation and growth of
an annular vortex. The ring vortex was produced with a piston–

cylinder apparatus immersed in a water tank. The dynamical and
geometrical characteristics were deduced from measurements of
the velocity field in a plane passing through the axis of symmetry.
They found that, in the early stage, most of the fluid that enters the
region of nonzero vorticity comes from the cylinder. As the vortex
ring grows and moves, fluid outside this cylinder is entrained.

Angilella [19] studied the transport of dust in the vicinity of a
pair of identical point vortices. In this case vortices rotate about a
common center and remain in a vertical plane. The research was
motivated by the fact that a pair of corotating vortices increases
the particle dispersion. The forces considered in the analysis were
gravity, drag, and the Coriolis and centrifugal (pseudo) forces; the
latter two were introduced because the equation of motion was
solved in a rotating frame of reference. When drag is the dominant
force, the particle trajectories exhibit chaotic behavior, so mixing
is enhanced.

On the other hand, under certain conditions the paths of small
solid particles are not appreciably different from that of the fluid
elements. This property is used in PIV, where the velocity of a flow
is calculated from the displacement of particles in two successive
frames. In water measurements, flow is seeded with particles with
size typically in the range of 10–50µm in diameter. In addition, for
the density to be similar to that of the surrounding fluid, hollow
glass or polyamide spheres are often used.

The aim of this work is to study the evolution of dipoles for dif-
ferent values of Strouhal and Reynolds numbers. Particular atten-
tion is devoted to the case when the dipole lifetime exceeds the
driving period, so vortices interact. In addition, we investigate the
stability of the flow responsible for breaking the symmetry and de-
stroying the vortices. On the other hand, we are interested in cal-
culating solid–particle paths from an equation deduced from first
principles [20], and from this to determine if particles accumulate
in some particular region. Finally, a goal of this work is to compare
our numerical results with experimental and observational data.
This comparison shows that this two-dimensional numerical sim-
ulation reproduces some important features of tidal-induced flow.

The paper is organized as follows: In Section 2, we present
the differential equations in stream function–vorticity formulation
and describe the geometry of system and the boundary conditions
imposed. In Section 3, we describe the numerical solution based
on Chebyshev polynomials for spatial coordinates and finite
differences for time. In Section 4, we present the evolution of the
vorticity and dipole position for different values of S and Re. In
Section 5, we solve the equation for solid–particle trajectories and
show some particular cases. Section 6 is devoted to a discussion of
the main results and, finally, we draw conclusions in Section 7.

2. Theoretical framework and methodology

The Navier–Stokes and continuity equations express the main
conditions satisfied by moving fluids. For incompressible flow the
equations are:

Du⃗
Dt

= F⃗ −
1
ρ

∇⃗P + ν∇2u⃗ (2)

∇⃗ · u⃗ = 0 (3)

where

Du⃗
Dt

=
∂ u⃗
∂t

+ (u⃗ · ∇⃗)u⃗ (4)

is the material derivative, ν is the kinematic viscosity, and P is
the pressure. Because the solution is obtained in two dimensions
(2D), we use the stream function–vorticity formulation [21]. In this
manner only two second-order partial differential equations need
to be solved.



Download English Version:

https://daneshyari.com/en/article/650463

Download Persian Version:

https://daneshyari.com/article/650463

Daneshyari.com

https://daneshyari.com/en/article/650463
https://daneshyari.com/article/650463
https://daneshyari.com

