ARTICLE IN PRESS

Catalysis Today xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Effects of support materials and silver loading on catalytic ammonia combustion properties

Satoshi Hinokuma^{a,b,*}, Hiroki Shimanoe^a, Yusuke Kawabata^a, Shun Matsuki^a, Saaya Kiritoshi^a, Masato Machida^a

^a Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

^b International Research Organization for Advanced Science and Technology, Kumamoto University, Japan

ARTICLE INFO

Keywords: Ammonia Catalytic combustion Supported Ag Al₂O₃

ABSTRACT

In this research, the effects of support materials and silver (Ag) loading on catalytic NH₃ combustion properties were studied. Among the Ag supported on various metal-oxide materials, Ag/Al_2O_3 exhibited high catalytic NH₃ combustion activity and high N₂ (low N₂O·NO) selectivity. The combustion activity is closely associated with the Ag dispersion which is estimated using the O₂–H₂ titration technique. Thus, highly dispersed Ag nanoparticles on supports play a crucial role in the low-temperature light-off of NH₃, implying that the support materials significantly affect the Ag dispersion. Although Ag/Al₂O₃ with higher amounts of Ag loading tended to exhibit higher combustion activity, the optimum Ag loading was found to be approximately 10 wt.%. At the optimum Ag loading concentration, Ag/Al₂O₃ performed well during the catalytic NH₃ combustion reaction. The local structures of the catalysts were investigated *via* transmission electron microscopy, X-ray absorption fine structure and gas adsorption techniques. After an NH₃ combustion reaction at a temperature of 900 °C, Ag/Al₂O₃ slightly deactivated because of the sintering of metallic Ag nanoparticles and the decreased surface area.

1. Introduction

The excessive consumption of finite fossil fuels and the risks associated with the use of nuclear power indicate that the exploration of cleaner and more efficient alternative fuel sources is crucial. Recently, NH₃ has been considered as a renewable and carbon-free energy source owing to its high energy density (3160 Wh L^{-1}) and negligible thermal NO_x emission [1]. However, in comparison to fossil fuels, NH₃ poses the following problems: (1) high ignition temperature, (2) low combustion rate and (3) production of N₂O and fuel NO_x. Thus, the development of new NH₃ combustion systems is necessary. One possible candidate is catalytic combustion, a promising technique for decreasing emissions from hydrocarbon-based fuels. It was actively studied for use in gas turbines, boilers and jet engines in the 1980s [2,3]. Catalytic combustion has multiple advantages over conventional non-catalytic combustion because NO_x emission is greatly diminished by the low operating temperatures and high efficiency can be attained through stable combustion. By applying a novel catalytic combustion system to the NH₃ fuel, it is expected that low-temperature ignition and negligible NO_x emission can be achieved.

Previously, we demonstrated that the catalytic NH₃ combustion activity of metal oxides increases as their metal-oxygen bond energy decreases [4] and that copper oxides (CuO_x) supported on aluminium oxide borates exhibit higher N₂ selectivity and thermal stability than CuO_x supported on other materials [5]. In addition, the catalytic properties for NH₃ combustion over Ag/Al₂O₃ were reported [6]. For the selective catalytic oxidation (SCO) of NH₃ to N₂, supported Ag catalysts, particularly Ag/Al₂O₃, have been studied because these catalysts exhibited high activity. Previously, Gang et al. reported that Ag/ Al₂O₃ shows higher NH₃ oxidation activity and N₂ selectivity than Ag/ SiO₂ and Ag powder catalyst and concluded that their catalytic properties were induced by the interaction between Ag and Al_2O_3 [7]. Lippits et al. reported the catalytic properties for NH₃-SCO over single Ag/Al₂O₃ and suggested the effects of adding Li₂O₃ (increasing the Ag dispersion) and/or CeO₂ (increasing the Ag activity) [8]. The role of Ag species in Ag/Al₂O₃ for NH₃-SCO was studied by Zhang et al., who maintained that Ag^0 and Ag^+ act as the main active species at reaction temperatures < 140 °C and > 140 °C, respectively [9]. Zhang and He also studied the reaction mechanism of NH₃-SCO over Ag/Al₂O₃ [10]. Recently, Qu et al. reported the effect of support materials (e.g. Al₂O₃,

http://dx.doi.org/10.1016/j.cattod.2017.08.010 Received 24 May 2017; Received in revised form 28 July 2017; Accepted 4 August 2017 0920-5861/ © 2017 Published by Elsevier B.V.

^{*} Corresponding author at: Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

E-mail address: hinokuma@kumamoto-u.ac.jp (S. Hinokuma).

SiO₂, NaY and TiO₂) on the NH₃-SCO properties of Ag-based catalysts [11]. In addition, Ag/Al₂O₃ has been widely studied for the selective catalytic reduction of NO_x by NH₃ [12–26]. However, these studies regarded NH₃ as air pollution, and therefore, their oxidation tests for the low concertation of NH₃ (approximately < 0.1% NH₃) were evaluated at low reaction temperatures (approximately < 400 °C), studies of which have been reviewed by Chmielarz and Jablonska [27].

In this study, we focused on Ag catalysts that are supported on several materials to study their catalytic combustion properties towards high concertation of NH₃ (as an energy source) at high reaction temperatures (\leq 900 °C). Because Ag/Al₂O₃ exhibited high activity and N₂ selectivity in comparison to Ag supported on other materials, the effects of Ag loading were also studied. In addition, the local structures of Ag/Al₂O₃ were characterised using transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS) and gas adsorption techniques. Finally, the thermal stability and reproducibility of Ag/Al₂O₃ were considered.

2. Materials and methods

2.1. Catalyst preparation

A wide variety of commercially available metal oxides (Table 1) were used as support materials for Ag. Supported Ag (5 wt.% loading as metallic Ag) was prepared by impregnation of an aqueous solution of AgNO₃ (Wako Pure Chemicals), followed by drying and calcination at 600 °C for 3 h in air. To study the effects of Ag loading, 0.1 wt.%–15 wt. % Ag/Al₂O₃ (γ -Al₂O₃: JRC-ALO-8, supplied by Catalysis Society of Japan; Brunauer–Emmett–Teller (BET) surface area (S_{BET}) = 173 m² g⁻¹) with high performance in NH₃ combustion was prepared in a similar manner. Catalyst preparation methods for the other catalysts are explained in the Supporting Information.

2.2. Characterisation

Powder X-ray diffraction (XRD) measurements were performed using monochromated Cu K α radiation (30 kV; 20 mA; Multiflex, Rigaku). Ag loading was determined through X-ray fluorescence (XRF; EDXL-300; Rigaku) measurements. The XAFS measurements of Ag Kedge were performed at the NW10A station of the Photon Factory (PF), High Energy Accelerator Research Organization (KEK) and at the BL01B1 station of SPring-8, Japan Synchrotron Radiation Research Institute (JASRI). The Ag K-edge XAFS spectra were recorded in the transmission mode using an ionisation chamber filled with Ar, another chamber filled with Kr and an Si(311) monochromator. Reference samples (Ag₂O and AgAlO₂) were mixed with boron nitride (BN) powder to give an appropriate absorbance at the edge energy, whereas the catalysts were used without mixing with BN. The XAFS data were processed using the IFEFFIT software package (Athena and Artemis). High-resolution TEM (HRTEM) observations were performed using an

 Table 1

 Catalytic properties of as-prepared 5 wt.% Ag supported on various metal oxide materials.

Support	T ₁₀ ^a /°C	T ₉₀ ^a /°C	Selectivity at T_{90}^{a} /%			$S_{BET} / m^2 g^{-1}$	D _{Ag} ^b /%
			N_2	N_2O	NO		
MgO	292	398	72	25	3	53	< 1
Al_2O_3	229	396	89	11	< 1	150	25
10A2B	233	361	86	14	< 1	82	9
AlPO ₄	349	713	78	< 1	22	66	7
SiO_2	259	401	87	12	1	172	3
TiO_2	229	521	88	2	10	39	26
ZrO_2	339	559	84	< 1	16	9	2

^a Temperature at which NH₃ conversion reached 10% and 90%.

^b Estimated by O₂-H₂ titration.

FEI Tecnai F20 electron microscope operated at 200 kV. The S_{BET} calculations were performed using N₂ adsorption isotherms, which were obtained at -196 °C (Belsorp, Bel Japan, Inc.). The Ag dispersion of supported catalysts was estimated by O₂–H₂ titration (Bel-cat, Bel Japan, Inc.), as per the method used by Seyedmonir et al. [28]. The catalysts were reduced (bulk: metallic Ag and/or AgO_x \rightarrow metallic Ag) by flowing 5% H₂/Ar at 300 °C for 1 h, subsequently purged with Ar, cooled to 170 °C and reoxidised (surface: metallic Ag \rightarrow Ag₂O). Reoxidation was performed by flowing 2.5% O₂/He at the same temperature for 10 min. The catalyst cell was purged with Ar. Finally, pulsed H₂ (5% H₂/Ar) was supplied to supported Ag catalysts and the Ag dispersion was expressed in terms of the consumption H₂/surface Ag (1:1).

2.3. Catalytic NH₃ combustion tests

Catalytic NH₃ combustion (NH₃–O₂ reaction) was performed in a flow reactor at atmospheric pressure. Catalysts (10–20 mesh; 50 mg) were fixed in a quartz tube (OD = ϕ 6 mm and ID = ϕ 4 mm) with quartz wool at both ends of the catalyst bed. The temperature dependence of the catalytic activity was evaluated by heating the catalyst bed from room temperature to 900 °C at a constant rate of 10 °C ·min⁻¹ while a gas mixture containing 1.0% NH₃, 1.5% O₂ and He (balance) at 100 cm³·min⁻¹ (W/F = 5.0×10^{-4} g·min·cm⁻³) was supplied. The O₂-excess ratio of NH₃ combustion was expressed as $\lambda = (pO_2/pNH_3)_{exp}/(pO_2/pNH_3)_{stoichiom}$. The concentrations of NH₃, N₂, N₂O/NO and NO₂ gas were analysed using a nondispersive infrared (NDIR) gas analyser (EIA-51d; Horiba), gas chromatography (GC-8A; Shimadzu), NDIR (VA-3011; Horiba) and chemiluminescence analyser (NOA-7000; Shimadzu). The calculation formulae for the concentration ratios are shown in the Supporting Information.

3. Results and discussion

3.1. Effects of support materials on catalytic NH₃ combustion properties

Fig. 1 shows the XRD patterns of as-prepared 5 wt.% Ag supported on various oxide materials. For all supported catalysts, the diffraction peaks were identified as belonging to each support material. The XRD patterns of Ag supported on MgO, $10Al_2O_3:2B_2O_3$ (denoted as 10A2B), SiO₂, and ZrO₂ showed peaks ascribable to the metallic Ag; however, these diffraction peaks could not be observed for the other support materials (Al₂O₃, AlPO₄, anatase TiO₂), probably because of the high dispersion of the Ag species. These trends are almost in agreement with their Ag dispersions, as summarised in Table 1. Indeed, from HRTEM observations (Supporting Information), as-prepared Ag supported on Al₂O₃ and TiO₂ could be characterised as highly dispersed and small Ag nanoparticles, whereas Ag supported on MgO and SiO₂ with low dispersion exhibited large Ag particles on each support.

Table 1 summarises the catalytic properties of as-prepared 5 wt.% Ag supported on various oxide materials. The activity was expressed in terms of the light-off temperature at which 10% conversion of NH₃ was reached (T_{10}) , and the product selectivities were evaluated at the reaction temperature when NH_3 conversion was 90% (T_{90}). The temperature dependence of the product selectivities for NH₃ combustion over the catalysts is shown in the Supporting Information. The combustion activity decreased in the following order: $Al_2O_3 \approx TiO_2 > 10A2B > SiO_2 > MgO > ZrO_2 > AlPO_4$, which bears no relation to the S_{BET} value of their catalysts. However, the activity order is almost same as the order of Ag dispersion (D_{Ag} : $TiO_2 \approx Al_2O_3 > 10A2B > AlPO_4 > SiO_2 \approx ZrO_2 > MgO)$ estimated by O₂-H₂ titration technique, suggesting that the Ag dispersion is closely associated with the combustion activity. In addition, it is believed that the highly dispersed (small) Ag nanoparticles on supports are considered to play a crucial role in the low temperature light-off of NH₃. This correlation between the activity and Ag dispersion is almost consistent with our previous report for binary CuOx-Ag/Al2O3 systems, Download English Version:

https://daneshyari.com/en/article/6504644

Download Persian Version:

https://daneshyari.com/article/6504644

Daneshyari.com