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a b s t r a c t

A spatially periodic temperature modulation is gradually applied at the lower boundary of a layer of
compressible fluid. The temperature from the lower wall diffuses into the layer and induces various
convection patterns. As the amplitude of the temperature modulation is increased, non-linear effects,
including those due to the inclusion of compressibility, become more prominent. An accurate numerical
scheme is developed to capture the full time-dependent behaviour here. Spectral methods will be used
throughout this work to provide accurate representations of the various solution components and allow
for the efficient implementation of a variety of boundary conditions.

Three different types of modulation are considered, namely a pure cosine as well as rounded triangle
and rounded square profiles, where the latter two of these have applications in various physical situations.
Interest lies in how the nature of the convection and temperature diffusion change as the amplitude of
these modulations is increased. Both no-slip and slip conditions will be implemented on the upper and
lower boundaries of the layer and the differences between the two will be considered for selected cases.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The behaviour of a compressible gas subjected to non-homo-
geneous heating from below will be studied. In some sense this
could be considered a variation on the Rayleigh–Bénard problem,
in which a fluid is uniformly heated from below and cooled from
above. The points of interest here, namely the use of a compressible
gas and the non-homogeneous heating, appear not to have been
studied extensively in combination. When considered separately
these two effects are applicable to various meteorological and as-
trophysical contexts, and by combining them here new aspects of
these problems are revealed. A linearized version of this problem,
where the amplitude of the non-homogeneous part of heating is
assumed to be small, will be considered elsewhere by Chen and
Forbes [1]. That investigation is particularly concerned with deter-
mining the effect of parameters such as layer height and viscosity
on the flow.

The extension of the classic Rayleigh–Bénard problem into
compressible flow is a logical progression, particularly given the
application of compressible flows to fields such as astrophysics
and meteorology. Some work by Spiegel [2], and continued by
Gough et al. [3], modelled the processes of stellar convection as
a compressible gas heated from below. The same concerns that
are the focus of much of the fundamental work on the Boussinesq
version of the flow, those of determining the critical point at
which convection occurs as well as the nature of this convection,
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are also at the fore in the analysis of the compressible problem.
In particular, the linear analyses of Spiegel [2], Gough et al. [3]
and Gauthier et al. [4] are concerned with investigating the onset
of convection in the two-dimensional case, and these studies
make use of a variety of numerical and asymptotic techniques. A
linear analysis of the equivalent problem in three dimensions by
Bormann [5] obtained critical values for a variety of compressible
gases.

A number of studies have investigated the non-linear behaviour
of these problems, typically with an emphasis on effects that
are present in the compressible flow, but not in the Boussinesq
version. A number of these effects are detailed by Furukawa and
Onuki [6], whose focus is on the process of heat transport, and
reveal the existence of various transient and steady solutions as
well as noting some unique behaviours for highly compressible
fluids. Similarly, Manela and Frankel [7] develop solutions that
are characterized by convective motion in a small region near the
walls. A comparison between slip and no-slip wall conditions has
been made by Gauthier [8] and this comparison will be used in
the work here as well. That paper made extensive use of spectral
methods and the formulation used there is similar to that adopted
in the present work.

Another relevant extension of the Rayleigh–Bénard problem in-
volves the spatial modulation of the conduction solution. A sta-
bility analysis for this problem has been conducted by Kelly and
Pal [9] and a key result of that study was in establishing the con-
nection between temperaturemodulation and spatially undulating
walls. Further work on the exact nature of the associated steady
convection for this type of flow has been performed by Riahi [10]
who also focussed on the effect of modulating temperature at
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both the upper and lower walls where these modulations were al-
lowed to be of different amplitudes. The combination of undulat-
ing boundaries and a temperature modulation has been studied by
Schmitz and Zimmermann [11]who, among other results, revealed
the presence of a Hopf bifurcation as the amplitude of the temper-
aturemodulationwas increased. Amore recent study is that of Fre-
und et al. [12] who examined the various types of instability and
pattern forming behaviour that may occur when a periodic tem-
perature modulation is applied at the lower wall. This is very sim-
ilar to the problem to be considered in this paper, except that here
the temperaturemodulationwill be examined in isolation from the
uniform temperature gradient used in these works.

The key driver of the flow in this paper will be a non-uniform
temperature applied at the lower wall. Previous authors have typ-
ically made use of either a Boussinesq or an anelastic approxima-
tion in treating this type of flow. There are a number of possible
choices for the precise form of the inhomogeneity in temperature
at the lower wall, and several will be considered in the course of
thework here. A straightforward choice is a sinusoidal variation, as
was adopted by Somerville [13], whose work used spectral meth-
ods and revealed the presence of asymmetrical solutions and the
importance of non-linear effects. Rossby [14] considered a linearly
varying temperature on the lower wall. The focus of that work was
on the resulting convective overturning behaviour in the presence
of density stratification, with a particular emphasis on the applica-
tion of such behaviour to ocean mixing.

Spectral methods will be employed in a number of contexts in
this paper and these will provide accurate and efficient techniques
to compute various solution components. Some previous work
on the compressible version of the Rayleigh–Bénard problem
by Gauthier [15] made use of such methods, with an emphasis
on choosing collocation points and applying implicit techniques.
Earlier authors such as Lorenz [16] and Somerville [13] similarly
considered heated flows using low-order spectral methods, and
these were useful in elucidating key behaviours, qualitatively
describing many aspects of the flow and even making reasonable
approximations to some non-linear effects.

Thework presented heremodels the non-uniform heating from
below of a compressible fluid using a variety of techniques. The
formulation of the problem is presented in Section 2, including
a discussion of boundary conditions and the related conduction
solution. The numerical solution technique for this problem is
outlined in Section 3 and these solutions are compared to the
linearized solutions obtained separately in Chen and Forbes [1],
where the amplitude of the temperature modulation is assumed
to be small. In particular, the effect of increasing the amplitude of
this non-uniform part of temperature for a variety of temperature
modulations will be considered here. Additionally, a comparison
of slip and no-slip boundary conditions will be made for selected
cases.

2. Formulation & non-dimensionalization

The flow of a compressible perfect gas, confined between two
plates of infinite lateral extent, under non-homogeneous heating
from below is considered. It is assumed that the flow is two
dimensional and that there is no net heat flux in or out of the
system. The exact formof the boundary condition on the lowerwall
will be specified in quite a general way so that a variety of profiles
for the non-homogeneous part of lower wall temperature may be
studied.

A schematic diagram of the flow is shown in Fig. 1. The fluid
region of interest is contained within a box of height h, and there
are open vertical boundaries on the left and right; later, the flow
will be assumed to be periodic in the x-direction. The upper wall is
held at a fixed temperature,whilst an inhomogeneous temperature

Fig. 1. Schematic diagram of the flow. The temperature field is displayed as
solid and dashed lines, where the solid lines represent temperature greater
than the ambient temperature and the dashed lines are less than the ambient
temperature. The light dotted lines are streamlines of velocity and the arrows
indicate the direction of rotation for each of the convection cells. All quantities are
dimensionless.

profile is applied to the lower wall. Details of the exact form of the
inhomogeneity will be given presently. The fluid has an ambient,
undisturbed temperature of T1 and it is assumed that the lower
wall is at some reference atmospheric pressure patm. There is a body
force due to gravity g , acting downward, which plays an important
role in buoyancy effects.

The flow is modelled with the full Navier–Stokes equations
for a compressible gas, as well as an energy equation. Here it is
assumed that the viscosity and thermal diffusivity are constant.
Following Tannehill, Anderson, and Pletcher [17], the equations for
conservation ofmass, x- and y-momentum and energy are derived.
The dimensional versions of these equations are
∂ρ
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= κ∇2T − p (∇ · q)+ µΦ (2.4)

where we have defined a velocity vector q = ui + vj, and D/Dt =

∂/∂t + q · ∇ is the usual material derivative. The constant µ
is the dynamic viscosity, κ is the thermal conductivity and g
is acceleration due to gravity. A viscous dissipation term Φ is
included in the energy equation (2.4) and is defined as
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although in practice this term is small compared to the rest
of Eq. (2.4). The fluid under consideration is assumed to be a
monatomic perfect gas and it follows that energy and pressure are
defined by the thermodynamic relations
E = cV T (2.6)
p = ρRT (2.7)
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