ARTICLE IN PRESS

Catalysis Today xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Flux method fabrication of potassium rare-earth tantalates for CO_2 photoreduction using H_2O as an electron donor

Zeai Huang^a, Kentaro Teramura^{a,b,*}, Hiroyuki Asakura^{a,b}, Saburo Hosokawa^{a,b}, Tsunehiro Tanaka^{a,b,*}

^a Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
^b Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan

ARTICLE INFO

Keywords: Flux method CO₂ photoreduction CO evolution Tantalate Rare-earth element

ABSTRACT

A facile one-pot flux method was applied to fabricate $K_2RETa_5O_{15}$ (RE = rare-earth element) with tetragonal tungsten bronze (TTB) structures. Pure TTB structures of $K_2RETa_5O_{15}$ (RE = La, Ce, Pr, Nd, and Sm) with rod-like morphologies were obtained using KCl as the potassium source and flux. For other potassium rare-earth tantalates, the TTB structure was dominant, with an additional RETaO₄ phase present. Among all these $K_2RETa_5O_{15}$, $K_2YTa_5O_{15}$, $K_2YTa_5O_{15}$ gave the highest activity for photoreduction of CO₂ with good selectivity toward CO evolution using H₂O as an electron donor, even in the presence of additional YTaO₄ phase. YTaO₄ fabricated using the flux method under same condition was inactive for photoreduction of CO₂ using H₂O. It was found that the activity for the photoreduction of CO₂ using H₂O. It was found that the activity for the photoreduction of CO₂ to be significantly affected by the weight ratio of potassium chloride to yttrium oxide and tantalum oxide (K/YT) in the fabrication process. The highest photoreduction activity achieved in CO evolution was 91.9 µmol h⁻¹ (for 1.0-g catalyst), with CO selectivity of 84.9%, at K/YT = 1.0. Surface analysis of these tantalates fabricated with different K/YT ratios showed that a high ratio of surface yttrium to tantalum (Y/Ta) was important to achieve a high CO evolution rate.

1. Introduction

The energy crisis caused by the consumption of large quantities of fossil fuels, which are non-renewable resources, is considered one of the most important current global issues [1]. Carbon dioxide (CO₂) emissions from burning fossil fuels have made a significant contribution to global warming because CO₂ is a major greenhouse gas [2]. The conversion of CO₂ to fuels and chemical feedstocks is thought to be an efficient way to solve both the energy crisis and global warming [3,4]. A promising method for CO₂ conversion is the use of renewable energy, such as solar energy, to convert CO₂ into other carbon sources with high energy densities. Heterogeneous photocatalysts have received much attention in CO₂ conversion because they can use solar light directly and be easily to recovery [5,6]. Products such as carbon monoxide (CO) [7], formic acid (HCOOH) [8], formaldehyde (HCHO) [9], methanol (CH₃OH) [10,11], and methane (CH₄) [12,13] have been reported from the heterogeneous photoreduction of CO₂.

Until now, many types of catalysts have been used for the photoreduction of CO_2 [14–16]. However, the activites of these catalysts are often limited by insufficient reduction potentials, high recombination rates of photogenerated electron–hole pairs, and/or poor CO_2 adsorption capacities. Reaction rates for the reduction products of CO_2 are very low, at usually a few µmol h⁻¹. In such cases, it is important to confirm that the carbon-containing products are derived from CO_2 rather than residual carbon contaminants [13,14,17,18]. Therefore, the development of highly efficient catalysts for the conversion of CO_2 is still a great challenge. Recently, our group reported several catalysts with good actives and high selectivity toward CO evolution using H₂O as an electron donor [19–22]. Isotopic experiments using ¹³CO₂, and/or blank tests, confirmed that the CO product was derived from the conversion of CO_2 . Stoichiometric amounts of O_2 evolution were also detected to ensure that water had been consumed as an electron donor.

Rare-earth element-based catalysts have shown great advantages in solar energy conversion in the last few decades [23–25]. For instance, La-doped NaTaO₃ modified with NiO showed the highest apparent quantum yield at 270 nm for overall water splitting, due to the formation of unique characteristic steps on the surface of the nanostructures [26], which might be beneficial for the separation of photogenerated electrons and holes. $K_2LnTa_5O_{15}$ (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, and Tm), fabricated using a solid-state reaction (SSR) method, reportedly showed activity in overall water splitting; among these, $K_2SmTa_5O_{15}$ showed the highest activity using 0.5 wt% NiO cocatalyst

http://dx.doi.org/10.1016/j.cattod.2017.03.043

^{*} Corresponding authors at: Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan. *E-mail addresses*: teramura@moleng.kyoto-u.ac.jp (K. Teramura), tanakat@moleng.kyoto-u.ac.jp (T. Tanaka).

Received 24 November 2016; Received in revised form 8 March 2017; Accepted 24 March 2017 0920-5861/ @ 2017 Elsevier B.V. All rights reserved.

Catalysis Today xxx (xxxx) xxx-xxx

Fig. 1. (A) XRD patterns and (B) the enlarged areas at 2 θ ranged from 28.5° to 30° of K₂LaTa₅O₁₅ (a), K₂CeTa₅O₁₅ (b), K₂PrTa₅O₁₅ (c), K₂NdTa₅O₁₅ (d), and K₂SmTa₅O₁₅ (e), respectively.

Fig. 2. (A) XRD patterns and (B) the enlarged areas at 2θ ranged from 33° to 36° of K₂EuTa₅O₁₅ (a), K₂GdTa₅O₁₅ (b), K₂TbTa₅O₁₅ (c), K₂DyTa₅O₁₅ (d), K₂HoTa₅O₁₅ (e), K₂YTa₅O₁₅ (f), K₂ErTa₅O₁₅ (g), K₂TmTa₅O₁₅ (h), K₂YDTa₅O₁₅ (i), K₂LuTa₅O₁₅ (j), K₂ScTa₅O₁₅ (k), and YTaO₄ (l), respectively.

[27]. We recently successfully applied a modified flux method to the fabrication of Sr₂KTa₅O₁₅ with a TTB structure, which showed good activity in the photoreduction of CO₂ to CO using H₂O as an electron donor [28]. The TTB structure is perovskite-derived structure, it contains three types of cation tunnels (pentagonal, square, and triangular tunnel), compared with only one type of tunnel (square) in the perovskite structure [29,30]. The materials formed with these three types of tunnels showed a wide variety of occupation possibilities, leading to numerous unique properties [31-33], such as electro-optic ferroelectric [34] and pyroelectric [35] properties. For Sr₂KTa₅O₁₅, K⁺ and Sr^{2+} cations occupied the pentagonal and square tunnels, while, similarly, K^+ and RE^{3+} (RE = rare-earth element) cations occupied the pentagonal and square tunnels in K₂RETa₅O₁₅ [36]. Therefore, we believe that the flux method could also be applied to the fabrication of K₂RETa₅O₁₅. To our knowledge, the flux method fabrication of K₂RETa₅O₁₅ and their activities of CO₂ using H₂O as an electron donor have not reported. In this work, we applied a flux method to fabricate K₂RETa₅O₁₅ with TTB structures, which achieved significant activities for CO evolution in the photoreduction of CO₂ to CO using H₂O as an electron donor.

2. Experimental section

2.1. Fabrication of K₂RETa₅O₁₅ and deposition of silver

 $K_2RETa_5O_{15}$ were fabricated using a flux method with KCl (99.8%, Wako) as the potassium source and flux. A stoichiometric mixture of RE_2O_3 (RE = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Tm, Lu, and Sc), CeO_2 , Pr_6O_{11} , or Tb_4O_7 (99.9%, Kento), and Ta_2O_5 (99.9%, Kojundo), was ground with KCl in an Al_2O_3 mortar for 5 min. Unless otherwise noted, the total weight ratio of KCl salt to rare-earth element oxide and Ta_2O_5 was fixed at 1.0. The above-mentioned mixture was then transferred to a 30-mL Al_2O_3 crucible. The resulting mixture was calcined at 1423 K for 6 h in air. After cooling to room temperature, the mixture was thoroughly washed with distilled water at 358 K three times in order to remove residual salts, and then dried in air at 353 K. The same procedure was employed in all catalyst fabrication processes. For $K_2YTa_5O_{15}$ fabricated using a different weight ratio of KCl to Y_2O_3 Download English Version:

https://daneshyari.com/en/article/6504904

Download Persian Version:

https://daneshyari.com/article/6504904

Daneshyari.com