European Journal of Mechanics B/Fluids 33 (2012) 74-86

journal homepage: www.elsevier.com/locate/ejmflu

Contents lists available at SciVerse ScienceDirect

European Journal of Mechanics B/Fluids

European Joumol of

Mechanics

Derivation of a BGK model for mixtures

Stéphane Brull®*, Vincent PavanP®, Jacques Schneider®

@ MATMECA, IMB-Applied Mathematics, Institut Polytechnique de Bordeaux, 33405 Talence cedex, France

b JUSTI DTF Team at Polytech Marseille, 5 rue Enrico Fermi, 13453 Marseille, France
¢ IMATH, University of Toulon, avenue de l'universite, 83957 La Garde, France

ARTICLE INFO ABSTRACT

Article history:

Received 3 August 2011

Received in revised form

4 December 2011

Accepted 12 December 2011
Available online 29 December 2011

The aim of this article is to construct a BGK operator for gas mixtures starting from the true Navier-Stokes
equations. That is the ones with transport coefficients given by the hydrodynamic limit of the Boltzmann
equation(s). Here the same hydrodynamic limit is obtained by introducing relaxation coefficients on
certain moments of the distribution functions. Next the whole model is set by using entropy minimization
under moment constraints as in Brull and Schneider (2008, 2009) [23,24]. In our case the BGK operator

allows to recover the exact Fick and Newton laws and satisfy the classical properties of the Boltzmann
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1. Introduction

The BGK equation [1] is a seminal simplified model of the
nonlinear Boltzmann equation of gas dynamics. While keeping
physical and mathematical properties of the Boltzmann equation
(conservation laws, H-theorem, equilibrium states, etc.) it is often
used for numerical purposes. Nevertheless solutions of the BGK
equation are very different from those of the Boltzmann equation
far from equilibrium. In the Navier-Stokes limit things are much
different and a modified version of this model - the Ellipsoidal
Statistical Model [2] - allows to recover the correct transport
coefficients (Prandtl number).

The Boltzmann equation can be easily extended to the case
of inert gas mixtures but things are more difficult for BGK type
models. For example, momentum and energy conservations stand
only for the whole set of particles. Besides phenomena such as
diffusion (Fick law) or thermal diffusion (Soret law) must be
considered in the hydrodynamic limit. The Boltzmann equation(s)
for gas mixtures has been widely studied by Japanese researchers
(see for example [3-6]). Their results feature essential differences
with the usual monatomic Boltzmann equation. Its theoretical
aspects such as existence theorems [7-9] or study of a binary
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mixture close to a local equilibrium [10] confirm the specificity of
multi-component gases.

Coming back to modeling there exists a great variety of BGK
models which traces back to the work of Gross and Krook [11] to
the most recent model by Kosuge [12]. A first idea was to mimic
the monatomic simplified models in the case of multi-species
[11,13-15]. In the case of Maxwellian molecules, models were
designed to give the right transfers of momentum and energies
far from equilibrium [14,15]. Then Garzo et al. [16] extended the
previous approximations for any kind of molecular interaction.
In this vein, Kosuge [12] has designed a model that is able to
approximate all transfers of moments up to the order two plus
the “heat transfers”. But no real mathematical considerations such
as nonnegativness of the distribution functions or entropy decay
were addressed. This was finally done by Andries et al. [17]. This
model has later been widely used in the context of reactive gas
mixtures (see e.g [18] and references therein). Besides a new
property was stated by Garzo et al. [16]: the indifferentiability
“principle”. When all molecules are of same mass and cross
sections are equal then the whole set of equations must reduce to
a single one when adding all distribution functions. This property
is also satisfied by the model of Andries et al. [17].

Let us remark that while numerical results are quite good
for some models or mathematical (and physical) properties are
satisfied for others it is quite surprising that none of them has
attempted to reach the right hydrodynamic limit. That is to obtain
the right transport coefficients as (for example) the Ellipsoidal
Statistical Model [2] does in the case of monatomic molecule. In


http://dx.doi.org/10.1016/j.euromechflu.2011.12.003
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
mailto:Stephane.Brull@math.u-bordeaux1.fr
mailto:vincent.pavan@polytech.univ-mrs.fr
mailto:jacques.schneider@univ-tln.fr
http://dx.doi.org/10.1016/j.euromechflu.2011.12.003

S. Brull et al. / European Journal of Mechanics B/Fluids 33 (2012) 74-86 75

general all the authors rather study the hydrodynamic limit of their
model and eventually compared it with the right one [19].

Our approach goes the other way. We consider the Navier—
Stokes equation with transport coefficients either computed with
the hydrodynamic limit of the Boltzmann equation or given by
some experiments. Then the aim of the paper is to construct a BGK
model that allows to recover those coefficients — in the present
case the Fick law. Our main result is in Theorem 2 where we
prove that our operator enjoys that property in addition to the
classical properties of the Boltzmann equations. Remark that the
Fick relaxation operator is not just an abstract model since the Fick
matrix coefficients can be obtained using algorithms by Ern and
Giovangigli [20]. The paper is organized as follows. In Section 2
we firstly recall Boltzmann equations for gas mixtures and
relevant macroscopic quantities. Secondly we introduce spaces
and notations that will used in the sequel. Finally we define
a class of operators (so-called properly defined) basing on the
properties of the Boltzmann collision operators (Section 2.4). In
Section 3 we recall in a concise and clear way the link between
the thermodynamic of irreversible processes (see for example [21])
and the hydrodynamic limit of the Boltzmann equation. The
computation and properties of the transport coefficients obtained
from the Boltzmann equations are given in Section 3.2. Such
computations easily extend to the case of properly defined
operators. Section 4 is devoted to the construction of our
operator. We consider linear perturbations or fluctuations around
thermodynamical equilibrium. Those are classical assumptions of
the thermodynamic of irreversible processes [21] and of statistical
physics [22]. This is also the basis of the “theory” of relaxation
coefficients introduced by two of the authors [23,24]. Our model
is constructed in two step. Firstly we compute those coefficients
and related moments of the distribution functions basing only on
the Fick matrix (Proposition 1). Then the whole Fick relaxation
model is set by using a principle of entropy minimization under
moment constraints (Theorem 1). Its definition is given in 3.
The simplicity of this model relies on its construction which
requires only to diagonalize a modified Fick matrix. In Section 5
we prove that this operator is properly defined (Proposition 2). As
a consequence the derivation of its hydrodynamic limit as well as
the properties of the transport coefficients just follow the steps
that were given for the Boltzmann equation itself (Section 3.2).
In particular this BGK model gives at the hydrodynamic limit the
exact Fick laws (Section 5.2). We finally prove in Section 5.3 aresult
concerning the indifferentiability property and the correct Fick law
(Proposition 4).

2. The Boltzmann equation and other general kinetic equation
for gas mixtures

2.1. The Boltzmann operator for inert gas mixture

Let us consider a gas mixture with p components. The distri-
bution function f;(t, x, v) (or for short f;,i € [1,p] with f =

( Ty ons ,fp)) of a given species i evolves according to the Boltzmann
equation:
k=p
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Here Q; is the Boltzmann collision operator between molecules of
species i and k and oy, = oy, is the differential cross section which

depends on the interaction potential between species i and k. Fi-
nally V = w — v is the relative velocity. The post collisional veloc-
ities are given by
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Those equations satisfy the conservation of momentum and energy
at a microscopic level
MV 4+ myw = mvy; + mwy;,

mi V112 + my Iwl? = my |V + me Vi)

2.2. Macroscopic quantities for the mixture

We denote withn', p!, u’, E, €' and T' the macroscopic quantities
representing respectively the number density, density, average
velocity, energy per unit volume, energy per particle and finally
temperature of a given specie i. They are defined by the following
relations:

n' = fidv, ol = mn', n'a = / vf;dv,
R3
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where kg is the Boltzmann constant. In the same way macroscopic
quantities for the mixture are defined by
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Given a mixture of p species with macroscopic values n’, u, T an
important list of functions are the Maxwellians of equilibrium
reading as:
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We denote by M := (Mg, ..., M,). At last for any list of non

negative functions f := ( Ty enens fp) we define the entropy function
H as:

i=p
H( = Z/ (filn (F) — f) dv.
im1 JR3

2.3. Other considerations

Using the above notations we note as L? (M) the set of
measurable functions ¥ = (1, ..., ¥,) such that:

i=
) = 2/3 Y M < +00.
i=1 /R

This space is equipped using its natural dot product:

i=p
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