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a b s t r a c t

We investigate a problem based on the double-deck structure of Smith & Duck (1977) [1] numerically. In
the first part of the paper, we discuss the nature of separation and subsequent reversed flow occurring
when a jet-like boundary layer encounters a corner with angle θ ∝ Re−

3
14 α, where α is an order-one

quantity and Re is the Reynolds number, which is assumed to be large. The separation is caused by a
nonlinear upstream response within the jet, wherein the motion acquires a double-deck structure. We
also consider the behaviour of a jet-like boundary layer when it encounters a hump or an indentation.
The boundary shape was chosen to be y = h exp(−k2x2) for a range of h and k for both humps (h > 0)
and indentations (h < 0), where h is the height of the hump/indentation and k is the width parameter.
For higher values of h in the case of humps we observe a recirculation region ahead and behind the hump.
In the case of an indentation, the recirculation region is centred at the indentation.

In the second part of the paper, we numerically investigate the steady flow of a liquid layer past
obstacles at high Reynolds number (Re → ∞). We discuss the nature of separation and subsequent
reversed flow occurring when a liquid layer encounters a convex corner. The angle is represented as
θ ∝ Re−

3
7 α, where α is an order-one quantity and Re is the Reynolds number, which is assumed to

be large. We again consider the behaviour of a liquid layer when it encounters a hump or indentation.
The boundary shape was chosen to be same as for the wall-jet case. The pressure–displacement law is a
combination of a special case of that occurring in the hypersonic flow theory of Brown et al. (1975) [25]
and the jet law of Smith & Duck (1977) [1] given by p = −A′

− σA, where σ is inversely proportional
to the angle of inclination of the initial plane. The pressure distribution for values σ ≥ 1 suggests that
there is no longer any local minimum or maximum, but only a favourable pressure gradient, suggesting
no separation. For liquid layer flows past a hump, free interaction takes place, together with a hydraulic
jump occurring far ahead of the hump. For higher values of σ ≥ 2, we found oscillatory behaviour in
pressure and skin friction distributions which decays far downstream for both humps and indentations.

We use a numerical technique based on a finite-difference technique in the streamwise direction and
Chebyshev collocation in the normal direction. The resulting algebraic equations are linearised using the
Newton–Raphson technique which leads to a block pentadiagonal system which is solved using a direct
method.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Themotivation for the present work is to understand small and
moderate scale separation when wall jets encounter corners and
humps/indentations. This problem is based on the double-deck
structure of Smith & Duck [1] and is investigated numerically. This
problem was studied by Merkin & Smith [2] who were able to
obtain solutions up to an angle α = 10. Our contribution is to
compute solutions for the corner problem with the scaled angle
parameter larger than those computed before, show an existence
of a secondary separation region embeddedwithin a large primary
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separation region and also obtain the critical angle for the onset
of separation for the case of corners. We resolve a disparity in
the ‘‘plateau’’ value of pressure between the two values given by
Smith & Duck [1] and Merkin & Smith [2]. Merkin & Smith restrict
their outer boundary to y∞ = 14 in their computations. We show
that restricting the outer boundary to such a value would lead
to ‘‘overshooting’’ of skin friction. Merkin [3] also studied wall
jets encountering humps/indents. We obtain solutions with large
values of |h| and varying width parameter k, where h and k are the
height and width of the hump/indent. We show the presence of a
separated region upstream of the hump, which was not previously
computed by Merkin [3].

The same double-deck structure was used by Gajjar [4] to study
liquid layer flow past convex corners. We show that there is no
separation for σ ≥ 1, which suggests that there is no longer
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any local pressure minimum or maximum, but only a favourable
pressure gradient. We also investigate the case of a liquid layer
encountering a concave shaped obstacle such as a hump. We
substantiate the evidence that when a liquid layer encounters a
hump, i.e., when p > 0, free interaction takes place which results
in a hydraulic jump occurring far ahead of the obstacle.

Flow separation is an interesting phenomenon associated with
fluid flows at large Reynolds number. Of particular interest is the
aerodynamic situation, where a rigid body is placed in a uniform
stream. Recall, that the Reynolds number is the dimensionless
ratio of inertial to viscous forces. High Reynolds number flows
correspond to relatively fast flows of fluids with relatively small
viscosity, for example ‘‘common’’ gases and liquids, such as air
and water. Boundary-layer theory has provided a framework for
investigatingmany aspects of fluid flow at high Reynolds numbers.
In 1904, Prandtl [5] observed that despite ‘‘common’’ gas and
liquids having low viscosity, viscous effects did play a major role
in the separation phenomenon. He argued that high Reynolds
number flow around a rigid body may be treated as inviscid
everywhere except in a very thin region adjacent to the body
surface, the so-called boundary layer.Within this region,which has
a thickness of O(Re−1/2), viscosity reduces the tangential velocity
u from the slip velocity predicted by the inviscid theory to zero at
the surface. However, under the influence of adverse mainstream
pressure gradient, the lowmomentum fluid adjacent to the wall is
susceptible to the onset of reversed flow, which leads to boundary-
layer separation and an interaction with the outer inviscid flow.

Prandtl’s description of the separation process, revealing that it
was at the time, still left some important questions unanswered.
In particular, it remained unclear why the recirculation flow
region did not remain inside the boundary layer whose thickness
decreases with the Reynolds number as O(Re−1/2). Instead,
experiments show that eddies erupt from the boundary layer,
resulting in the formation of large recirculation regions which
influence the entire flow field around the body. This question
was answered in the late 1930s when it was established that
the solution to the boundary-layer equations (in their classical
formulation as given by Prandtl) leads to a singularity at the
separation point; see [6,7]. The form of the singularity was
first predicted by Landau & Lifshitz [8]. Making use of heuristic
arguments, they arrived at the conclusion that the skin friction, τw ,
decreases on approach to the separation point as

τw ∼
√
xs − x.

Here x is the distance along the body surface, and xs is the
position of the separation point. They also found that the velocity
component normal to the body surface experiences unbounded
growth inversely proportional to

√
xs − x. Later, Goldstein [9]

confirmed this result, and (even more important) proved that the
singularity at the separation precludes the continuation of the
solution beyond the point of zero skin friction. This clearly shows
that the boundary-layer theory in its classical form, as formulated
by Prandtl [5], cannot be used in a small vicinity of the separation
point. A key element of the separation process, whichwas not fully
appreciated in Prandtl’s description, was an interaction between
the boundary layer and external inviscid flow, now referred
to as the viscous–inviscid interaction. Asymptotic theory of the
viscous–inviscid interaction, also known as the triple-deck theory,
was formulated simultaneously by Neiland [10] and Stewartson &
Williams [11] for the self-induced separation in supersonic flow
and by Stewartson [12] and Messiter [13] for incompressible fluid
flow near the trailing edge of a flat plate. Later, many researchers
were involved in the development of the theory, and it became
clear that the viscous–inviscid interaction plays a key role in awide
variety of fluid dynamic phenomena. An exposition of applications
of the theory to different forms of the boundary-layer separation

may be found, for example, in themonograph by Sychev et al. [14],
review papers by Stewartson [15], Smith [16], also in the book by
Sobey [17] and recently by Lagrée [18].

An important application of viscous–inviscid interaction theory
is the analysis of the flow separation observed in near-wall jets and
thin films. The need to investigate the structure of a jet flow near
its point of separation from a wall arises in many situations, for
example flows in pipes/channels, oscillatory motions and thermal
or colliding boundary layers, as well as wall jets near corners and
other wall discontinuity conditions. The interaction might be a
result of self-induced separation, a corner point or a trailing edge.
We study whether the ideas from the triple-deck theory can be
extended to the situation when there is no outer flow wherein
the boundary layer is driven by internal (buoyancy) forces, and the
flow in the boundary layer exhibits a jet-like profile. The answer
to the above question was given by Smith & Duck [1], who studied
the problemof separation of jets or thermal boundary layers froma
wall. They showed that jet flowcandevelop free interactionswhich
have a double-deck structure in which the unknown induced
pressure is due to the centrifugal forces acting across the jet.
Smith & Duck [1] then applied these results to understand the
behaviour of flows at a corner and the collision of two oncoming
jets. They also showed that during interaction the fluid near the
wall forms a viscous sublayer, driven along by the induced local
pressure gradient, whereas majority of the boundary layer reacts
in an inviscid displaced fashion. Upstream of the separation, the
sublayer pressure increases slightly, causing a decrease in the skin
friction, and the sublayer expands. The associated movement of
fluid in the inviscid region then induces a pressure drop across the
jet, but, because the pressure at the edge of the jet does not change,
the transverse pressure gradient reinforces the pressure increase
of the wall. They concluded that separation, followed by a sizeable
eddy of reversed flow, takes place over a streamwise length scale
of distance O(Re−

3
7 ) along the wall. The scalings involved were

mainly derived from an order-of-magnitude argument analogous
to that used by Smith [19] in a channel flow problem.

Messiter & Liñan [20] studied the behaviour of a free convection
boundary layer on a vertical plate near a discontinuity in plate
temperature and near the trailing edge of a vertical plate.
Smith [21] also studied the problem of free convection boundary
layer encountering a trailing edge. Messiter & Liñan [20] and
Smith [21] both showed that the boundary layer adjusts to the
discontinuity in boundary conditions through a ‘‘double-deck’’
structure. Later Merkin & Smith [2] applied this theory to free
convection boundary layers near the corner of a body contour
and at the trailing edge of a flat plate. They found that the
corner problem has some similarities with supersonic flow near
a convex corner, as discussed by Stewartson [15], though the
pressure–displacement relation is different. They concluded that,
for concave corners with sufficiently large angles, there will be a
reversed-flow region centred on the corner and that for convex
corners the flowwill separate downstream of the corner. Merkin &
Smith [2] were able to compute the solution for the concave corner
up to α = 10 and reported a ‘‘plateau’’ value of 1.6 which was
different from the one reported by Smith & Duck [1]. This disparity
in the ‘‘plateau’’ value motivated us to investigate this problem as
explained earlier.

In this paper, we shall consider the behaviour of a jet-like
boundary layerwhen it encounters a small humpor an indentation.
We study a wider range of parameter values for the problems
studied by Merkin [3]. The humps and indentations considered
are of the form ŷ = Re−

9
14 h exp(−k2X2) and x̂ = Re−

3
8 X . Here

h and k are constants corresponding to the height and spread of
the hump or indentation, respectively, in the lower deck scalings.
For small transverse humps and indentations, i.e., |h| ≪ 1 and
k = O(1), Merkin [3] obtained both analytical solutions for
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