

Oxidative coupling of methane: MO_x -modified (M = Ti, Mg, Ga, Zr) Mn_2O_3 -Na₂WO₄/SiO₂ catalysts and effect of MO_x modification

Pengwei Wang, Xin Zhang, Guofeng Zhao *, Ye Liu, Yong Lu

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

ARTICLE INFO

Article

Article history: Received 22 February 2018 Accepted 31 March 2018 Published 5 August 2018

Keywords: Oxidative coupling of methane Light olefins Ethylene Oxide modification MnTiO₃

ABSTRACT

 $Mn_2O_3-Na_2WO_4/SiO_2$ is considered as the most promising catalyst for the oxidative coupling of methane (OCM) process; however, it only has a better catalytic performance over 800 °C. To improve its low-temperature performance, an attempt has been made to modify the $Mn_2O_3-Na_2WO_4/SiO_2$ catalyst using TiO₂, MgO, Ga₂O₃, and ZrO₂. Among the synthesized catalysts, the TiO₂-modified $Mn_2O_3-Na_2WO_4/SiO_2$ catalyst shows markedly improved low-temperature OCM performance, achieving a high CH₄ conversion of ~23% and a good C₂-C₃ selectivity of ~73% at 700 °C (the catalyst bed temperature), along with promising stability for at least 300 h without signs of deactivation. In comparison with the unmodified $Mn_2O_3-Na_2WO_4/SiO_2$ catalyst, the TiO₂ modification results in significant improvement in the low-temperature activity/selectivity, whereas the MgO modification has almost no impact and the Ga₂O₃ and ZrO₂ modifications have a negative effect. The X-ray diffraction (XRD) and Raman results reveal that the formation of a MnTiO₃ phase and a MnTiO₃-dominated catalyst surface is crucial for the improvement of the low-temperature activity/selectivity in the OCM process.

> © 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Methane is the major component of natural gas and is attracting increasing attention, owing to its lower cost and greater availability compared with crude oil [1]. However, it has four strong and localized C–H bonds (with a bond energy of 413 kJ/mol), and the absence of low-energy empty orbitals as well as the high-energy filled orbitals makes methane molecule difficult to readily participate in chemical reactions. Therefore, approaches to efficiently convert methane to high-value chemicals have been receiving increasing interest from petrochemical and energy industries worldwide. At present, methane is industrially transformed into bulk chemicals via an indirect route. In this approach, methane is first converted to syngas (CO and H₂) at an elevated temperature (> 700 °C) [2,3], and the syngas is then transformed into a wide spectrum of hydrocarbons or alcohols using a catalyst [4,5]. However, such indirect route is energy-intensive and expensive, and it would be preferable to convert methane to chemicals via a direct route. Unfortunately, the direct oxidative conversion of methane to chemicals such as methanol is thermodynamically feasible, but kinetically difficult [6,7]. Moreover, methanol and some other products, which are more reactive than methane, are prone to be deeply oxidized by oxygen to CO or CO₂ during the reaction.

^{*} Corresponding author. E-mail: gfzhao@chem.ecnu.edu.cn

[#] Corresponding author. E-mail: ylu@chem.ecnu.edu.cn

This work was supported by the Basic Key Project (18JC1412100) from the Shanghai Municipal Science and Technology Commission, the National Natural Science Foundation of China (21773069, 21703069, 21473057, U1462129), and the National Basic Research Program of China (973 program, 2011CB201403) from the MOST of China.

DOI: 10.1016/S1872-2067(18)63076-1 | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal, Vol. 39, No. 8, August 2018

Therefore, great efforts have been devoted to the direct conversion of methane to the desired chemicals, in order to make the direct route economically competitive with the indirect route.

Oxidative coupling of methane (OCM) is one of the direct routes for converting methane to ethane, ethylene, propane, and propene (namely, to C2-C3 hydrocarbons), as well as to CO and CO₂ formed as undesired by-products; however, this process represents a great challenge, because methane is very stable and difficult to activate. Hundreds of OCM catalysts, after the initial one developed by Keller et al. [8], have been synthesized in order to suppress the total oxidation of methane and increase the C₂-C₃ yield. Catalyst properties such as basicity [9], specific surface area [10], and reaction conditions [11] have been systematically investigated in detail and found to play important roles in achieving the optimal C₂-C₃ yield. Many studies have indicated that the OCM is a complicated process, involving heterogeneous catalysis and homogeneous coupling reactions to transform methane into olefins [12-14]. The OCM catalysts aim to generate more methyl radicals (CH3·) and avoid the deep oxidation of methane to form CO, CO₂, and H₂O on their surface [15,16]. Therefore, selective surface oxygen species with appropriate oxygen mobility, acting as active sites for generating CH₃· species, are the most critical features of the OCM catalysts [17-19]. Several traditional catalyst systems show high OCM activity, such as simple, complex, or mixed oxides of alkaline, alkaline-earth, and rare-earth oxides [20-25]. Lithium-modified magnesia (Li/MgO), where [Li+O-] centers are produced to efficiently generate CH₃. from CH₄, is an early example of a typical OCM catalyst; however, this material is rapidly deactivated owing to the loss of Li [26]. Lanthanide oxides in both pure and modified forms [27,28], whose surface oxygen vacancies are responsible for generating reactive oxygen, are another type of representative OCM catalysts; however, they show relatively lower selectivity toward C_2 and C_3 products. Among the enormous catalysts, multicomponent systems typically show better performance compared to pure oxide-based [29,30]. In metal ones particular, Mn₂O₃-Na₂WO₄/SiO₂, first discovered in 1992 by Fang et al. [31,32], is one of the most effective and stable catalysts, delivering 20%-37% CH₄ conversion and 65%-80% C₂-C₃ selectivity in a single-run reaction at 800-900 °C [31-35]. Following that discovery, the preparation or modification, catalytic mechanism, and microkinetic modeling of OCM catalysts have been extensively studied [36-39]. Recently, a method for the direct conversion of methane to light olefins and aromatics in the absence of molecular oxygen (O_2) , using special catalysts, has been developed. Bao and coworkers [40] reported a single-atomic iron catalyst embedded in a silica matrix (Fe©SiO₂) with promising methane conversion and light olefins selectivity. However, the corresponding reaction temperature for the non-oxidative methane conversion process is as high as 1100 °C; therefore, the commercial prospects for this process may be hampered by the ultrahigh reaction temperature involved. Despite these advances, the non-selective oxidation [41], and especially the high reaction temperature and loss of active component at such temperature [42], are still the key obstacles to

overcome in order to realize the industrial applications of these systems.

Previous studies of the total and selective oxidation of methane suggest that the low-temperature conversion of methane can be achieved [43,44]. For example, methane can be selectively oxidized to methanol over the FeZSM-5 catalyst at a low temperature of 200-300 °C [45], and its catalytic combustion can take place over oxide catalysts at 400-600 °C [46]. Recently, Hibino and coworkers [47] investigated the direct oxidation of methane to methanol using a fuel cell-type reactor with V₂O₅/SnO₂ as anode, and a high methanol production with 88.4% selectivity was obtained at 100 °C. It was revealed that methanol was produced by the reaction of methane with active oxygen species generated over the V2O5 catalyst. These results indicate that, despite the strong C-H bonds of methane, its selective oxidation temperature can be effectively reduced if molecular oxygen is properly activated. More recently, Tao and coworkers [48] reported an interesting NiCo₂O₄ catalyst capable of completely oxidizing methane in the temperature range of 350-550 °C. The interesting aspect of this work is that the mixed oxide compound can activate oxygen more readily than the single oxide. In fact, a TiO₂-modified Mn₂O₃-Na₂WO₄/SiO₂ catalyst has been previously reported by our group, and the MnTiO₃-driven low-temperature [Mn³⁺↔Mn²⁺] chemical cycle for O₂ activation was found to be responsible for the improvement of the low-temperature OCM performance of the TiO₂-modified catalyst [49,50]. Inspired by this interesting finding, we considered whether some other metal oxides such as MgO, Ga_2O_3 , and ZrO_2 , which can react with MnO_x to form mixed oxides similar to MnTiO₃ when used as additives, could also show the ability to improve the low-temperature OCM performance of Mn₂O₃-Na₂WO₄/SiO₂. Test results show that the TiO2-modified Mn2O3-Na2WO4/SiO2 catalyst still delivers the best low-temperature OCM performance, with ~23% CH₄ conversion and $\sim 73\%$ C₂-C₃ selectivity at 700 °C, owing to the formation of MnTiO₃ during the OCM reaction, which is consistent with previous results [49,50]. The introduction of MgO has no effect on the Mn₂O₃-Na₂WO₄/SiO₂ catalyst, because the newly generated Mg₂MnO₄ may play the same role as Mn₂O₃, achieving the $[MnWO_4 \leftrightarrow Mg_2MnO_4]$ chemical cycle instead of the high-temperature [MnWO₄ \leftrightarrow Mn₂O₃] one. However, the Ga₂O₃and ZrO₂-modified catalysts have a negative effect on the OCM performance, because the introduction of Ga₂O₃ and ZrO₂ facilitates the reduction of Mn₂O₃ and the subsequent reaction with Na₂WO₄ to form the relatively inactive MnWO₄, while completely suppressing the transformation of SiO₂ into α-cristobalite.

2. Experimental

2.1. Materials

All chemicals (analytical reagent, AR) employed in this work (sodium tungstate dihydrate, 50 wt% manganese(II) nitrate aqueous solution, zirconium nitrate, magnesium nitrate, and gallium nitrate) were purchased from Sinopharm Chemical Reagent Co., Ltd., China. Amorphous SiO₂ gel and anatase TiO₂ Download English Version:

https://daneshyari.com/en/article/6505621

Download Persian Version:

https://daneshyari.com/article/6505621

Daneshyari.com