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a b s t r a c t

Free-surface flows are of significant interest in Computational Fluid Dynamics (CFD). However, modelling
them especially when the free-surface breaks or impacts on solid walls can be challenging for many CFD
techniques. Smoothed Particle Hydrodynamics (SPH) has been reported as a robust and stable method
when applied to these problems. In modelling incompressible flows using the SPH method an equation
of state with a large sound speed is typically used. This weakly compressible approach (WCSPH) results
in a stiff set of equations with a noisy pressure field and stability issues at high Reynolds number. As
a remedy, the incompressible SPH (ISPH) technique was introduced, which uses a pressure projection
technique to model incompressibility. Although the pressure field calculated by ISPH is smooth, the
stability of the technique is still an open discussion. An alternative approach is to use an acoustic Riemann
solver and replace the particle velocities and pressures by pressures and velocities determined from a
Riemann solver. This technique is equivalent to the Godunov method in Eulerian techniques and so will
be called the Godunov SPH method (GSPH). However, since the acoustic Riemann solver is a first order
approximation of the Riemann solution, it is highly dissipative and cannot be employed in energetic
free-surface flows without modification. In this paper, the GSPH method is modified by using the HLLC
(Harten Lax and van Leer-Contact) Riemann solver. The accuracy of themodifiedGSPH technique is further
improved by utilising the MUSCL (Monotone Upstream-centred Schemes for Conservation Laws) scheme
with Slope–Limiter. This modified GSPH method along with the WCSPH and ISPH techniques are used to
study non-linear sloshing flow. The accuracy, stability and efficiency of the techniques are assessed and
the results are compared with experimental data.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Smoothed Particle Hydrodynamics (SPH) method is a
meshless, purely Lagrangian technique which was originally
developed in 1977 by Lucy [1] and Monaghan and Gingold [2,3].
It has subsequently been successfully employed in a wide range
of problems, e.g. astrophysics [4–6], fluid mechanics [7,8], solid
mechanics [9–11], fluid–structure interaction [12–14] and many
more (see [15] for a recent review).

In SPH, the ‘‘particles’’ are moving nodes that are advected
with the local velocity and carry field variables such as pressure
and density. As the fields are only defined at the set of discrete
points, smoothing (interpolation) kernels are used to define a
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continuous field and to ensure differentiability. Incompressibility
is typically satisfied in one of two ways. In the most common
approach, termed weakly compressible SPH (WCSPH), the fluid is
assumed compressible with a large sound speed (such that the
Mach numberM ≈ 0.1 and the density of the fluid typically varies
by less than 1%). An alternative approach uses a fractional-step
projection technique. In the first step, the velocity is integrated
in time without enforcing incompressibility. Incompressibility is
then achieved by projecting the intermediate velocity field onto a
divergent-free space by solving a pressure Poisson equation [16].
This approach will be referred to as incompressible SPH (ISPH).

While the WCSPH scheme has been successfully implemented
at low Reynolds number, the reflection of sound waves off
boundaries at high Reynolds numbers lead to severe instabilities
in the scheme [17]. In addition the stiff equation of state can
result in large unphysical pressure fluctuations which also affects
stability. These fluctuations in the pressure field can be mitigated
by reducing the sound speed and thereby relaxing the system.
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Increasing the viscosity can also reduce the noise in the pressure
field as an increased viscosity leads to smoother velocities and
therefore smoother densities in the equation of state. However
both of these approaches typically compromise accuracy and are
therefore not solutions to the noisy pressure problem.

As a remedy for large unphysical pressure oscillations, Cola-
grossi and Landrini [18] corrected the density calculation by renor-
malizing the density using Moving-Least Squares (MLS) density
correction. They showed that the correction improves the mass-
area-density consistency and also filters out pressure oscillations.
They also found that the density re-initialization procedure is ben-
eficial with respect to energy conservation when it is used along
with artificial viscosity. Others [19–21] have proposed a δ-SPH
scheme bymodifying the SPH equations and adding a proper artifi-
cial diffusive term into the continuity equation in order to remove
the spurious numerical high-frequency oscillations in the pressure
field. However, these WCSPH issues along with the requirement
of a very small time-step in order to resolve the sound waves can
be alleviated by using ISPH. Nevertheless, the solution of the el-
liptic pressure Poisson equation (PPE) increases the computational
costs at each time-step. Cummins and Rudman [16] showed that
the computational costs of solving the PPE can be reduced by use
of a multi-grid technique.

Another weakness of the WCSPH method is the use of an
artificial viscosity to introduce dissipation and therefore ensure
stability. However, the dissipation can be achieved in a more
accurate manner by solving the Riemann problem between each
pair of particles. The concept and advantages of using Riemann
Solvers in SPH has been studied by several researchers [22–25].
Monaghan [26] showed that the artificial viscosity is analogous to
terms constructed from signal velocities and jumps in variables
across characteristics in the Riemann problem. However, it
was pointed out that the results with artificial viscosity were
not as accurate as well approximated Riemann solutions [26].
To overcome this, Parshikov and Stanislav [27] and Parshikov
et al. [23] proposed a modified SPH method using a first order
approximation of the acoustic Riemann solver, which does not
require an artificial viscosity term for dissipation. Inutsuka [24]
has reformulated the SPH method using a second order Riemann
solver. Cha and Whitworth [25] have derived four different
formulations for Godunov-type particle hydrodynamics (GPH).
They have performed a von Neumann stability analysis for GPH
formulations and concluded that GPH is stable for all wavelengths,
while SPH is unstable for certain wavelength. Molteni and
Bilello [28] have presented two approaches for implementing
Godunov schemes in SPH and tested their Godunov-type SPH
formulations for a classical 1D shock tube problem and a 2D shock
around a Black Hole. They observed a significant improvement in
the accuracy of the SPH method. Roubtsova and Kahawita [29]
demonstrated that the SPH method with the Riemann solver
introduced by Parshikov and Stanislav [27] can be successfully
applied to free-surface flows. Ferrari et al. [30] have proposed
a modified SPH scheme based on introducing the monotone
Rusanov flux scheme in the density equation and hence removing
any artificial viscosity term. They showed that the modified SPH
scheme is able to compute an accurate and little oscillatory
pressure field. Leduc et al. [31] proposed a multi-fluid SPH
formulation by using an acoustic Riemann solver. They applied
the SPH Riemann solver proposed by Parshikov et al. [23] to
severalmulti-fluid flows problems. It was observed that the results
were affected by high numerical diffusion [32]. To alleviate this
numerical diffusion linked with the proposed upwind schemes,
they modified their Riemann solver by using a preconditioned
Riemann solver [32]. Leduc et al. [32] obtained a new linearised
Riemann solver for multi-fluid flows when surface tension effects
are important. This is in contrast to this particular study which

focuses on modelling free surface flows without surface tension
effects. Recently, Fourey et al. [33,34] used Riemann solver to
stabilise their SPH solver coupled with a Finite Element (FE) solver
for studying fluid–structure interaction. They showed that using a
Riemann solver resulted in a smoother SPHpressure field passed to
the FEM solver. This consequently improved the accuracy of their
coupled SPH-FEM solver [33,34]

In this paper, we apply the HLLC Riemann solver [35] to
the WCSPH method [36,37]. The HLLC Riemann solver is the
modified Riemann solver proposed by Harten et al. (HLL) [38]
which considers the contact discontinuity wave in the Riemann
problem. It was shown that the HLLC Riemann solver is as accurate
and robust as the exact Riemann solver but computationally more
efficient [39]. To reduce the dissipation and increase its spatial
order, the MUSCL scheme with a slope limiter is employed in this
work.

The purpose of this paper is to compare the accuracy and
stability of the GSPH method against the traditional WCSPH and
ISPH techniques for non-linear high Reynolds number sloshing
flows. Here, the WCSPH and ISPH techniques are first described
including the implementation of free-surface and solid wall
boundary conditions. This is followed by an outline of the GSPH
method with the HLLC Riemann solver. Similar to [36,37] an
MUSCL-based slope limiter scheme was used to improve the
spatial order of the Riemann solver. However, a more simpler
and general form of the Godunov-type SPH governing equations
based on the solution of a 1D local Riemann problem along the
interaction line of a pair of interacting particles is proposed.
This form of Godunov-type SPH can accurately simulate energetic
flows at various Reynolds numbers and can be easily extended
to three-dimensional (3D) problems without any modification.
Finally, the accuracy, stability and efficiency of WCSPH, ISPH
and GSPH are studied in the simulation of sloshing flow. We
compare both accuracy and efficiency of the three methods to
assess not only which method provides smoother, more accurate
results but also whether such accuracy comes at a computational
cost. If a computational cost is incurred, we quantify the cost
as the resolution changes. The results are also compared with
experimental data for both global features (free-surface profile)
and local features (time variation of impact pressure on the
boundaries).

2. The SPH method

The SPH method uses smoothing kernels to express a function
in terms of its values at a set of disordered points. The smoothing
kernel function (or weighting function), specifies the contribution
of a typical field variable, A(r), at position, r , in space. The kernel
estimate of A(r) is defined as [40,41]

A(r) =

V
A(r′)W (r− r′, h)dr′ (1)

where V represents the solution space and the smoothing length h
represents the effective width of the kernel W . The kernel has the
following properties

V
W (r− r′, h)dr′ = 1, lim

h→0
W (r− r′, h) = δ(r− r′). (2)

If A(r′) is known only at a discrete set of N points r1, r2, . . . , rN ,
then we approximate A(r′) as,

A(r′) =
N
j=1

δ(r′ − rj)A(rj)(dV )j (3)

where the index jdenotes the particle label andparticle jhas amass
mj and density ρj at position rj. The differential volume element
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