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a b s t r a c t

Nonlinear interactions between sea waves and the bottom are a main mechanism for energy transfer
between the different wave frequencies in the near-shore region. Nevertheless, it is difficult to account
for this phenomenon in stochastic wave models due to its mathematical complexity, which consists of
computing either the bi-spectral evolution or non-local shoaling coefficients. Recent advances allowed
the localization of the nonlinear shoaling coefficients, setting a simpler way to apply this mechanism in
these models for one-dimensional interactions. This was done by taking into account only mean energy
transfers between the modes while neglecting oscillatory transfers. The present work aims to improve
these localized coefficients in order to make them more consistent with the dominating resonance
mechanism—the class III Bragg resonance. The approximated stochastic models are tested with respect
to a deterministic nonlinear mild-slope equation model, where a significant advantage of the improved
coefficients is observed.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonlinear energy transfer is a dominant process that affects
the evolution of wave spectra both in deep water and in the
shoaling region. The nonlinear interactions in deep water consist
of wave quartet interactions at leading order. These wave quartets,
which act at cubic nonlinearity in wave steepness, satisfy resonant
conditions of thewave frequencies andwave numbers. This type of
evolution is rather a weak one that requires large spatial distances
(time) of thousands of wavelengths (wave periods) in order to
have a considerable effect. In intermediate to shallow water, the
nonlinear interactions act much faster with significant energy
transfers between triads of waves. This is possible due to the
influence of the bottom that enables us to satisfy the resonant
conditions already in quadratic nonlinearity. Furthermore, when
waves shoal their steepness increase, and as nonlinear interactions
are proportional to the wave steepness, the nonlinear energy
transfer becomes even larger in this region.

Various wave models address the problem of nonlinear
interactions in the near shore environment. Boussinesq-type
equations reduce one spacial dimension assuming the depth is
small compared to the wavelength. These equations can compute
the nonlinear time-domain problem with great accuracy (see,
e.g. [1]), but result in a very high computer effort. Other methods
assume a set of slowly evolving harmonicwave componentswith a
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vertical profile that fits the linear motion over a flat bottom (mild-
slope-type assumptions). This approach results in a set of evolution
equations for each harmonic that are coupled with quadratic
nonlinear terms. These equations can be hyperbolic (e.g. [2]),
elliptic and parabolic (e.g. [3–5]).

The advantage of using a stochastic approach is the signifi-
cant reduction in calculation effort, as the Nyquist limitation no
longer restricts the numerical solution. Several works on stochas-
tic wave models that account for nonlinear interactions were
presented. Agnon and Sheremet [6,7], Kofoed-Hansen and Ras-
mussen [8], Eldeberky and Madsen [9] presented stochastic evo-
lution equations based on hyperbolic models taking into account
one-dimensional interactions. Herbers and Burton [10] derived
stochastic evolution equations starting from a Boussinesq-type
model while presenting as well two-dimensional calculations for
the quasi-one-dimensional problem (no bottom changes in the
lateral direction). Janssen et al. [4] derived a stochastic model,
using a Fourier transform in the later direction. Their model in-
cludes diffraction effects, while accounting for two-dimensional
quadratic nonlinear interactions that allowmild changes in the lat-
eral direction.

The common and most widely used forecasting models are
based on a stochastic hyperbolic wave action equation. In these
models, simplified one-dimensional parametric source functions
are used to describe the triad interactions (see [11,12]). In these
source functions there is only energy transfer to higher harmonics
of each spectral component (self-interactions) without accounting
for other transfers of energy of different triad combinations and
energy that is transferred to lower harmonics. This approach
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enables an easy inclusion of simplified nonlinear energy transfers,
but may lead to a physically inappropriate evolution of the
spectrum (see [13,12]). In addition, the derivation of parametric
source functions consists of a local flat bottom approximation.
As oscillating bottom components, which enable satisfaction of
wave number resonance conditions, come as well from the bottom
profile’s derivatives, it inherently fails to accurately model the
dominating energy transfer—the class III Bragg resonance.

Here lies a wide gap. On one hand there are stochastic models
such as [4] that take into account the directional spreading of the
triad interactions, but on the other hand this physics is not applied
to the wave forecasting models even for the one-dimensional
case. The problem in including the two-dimensional quadratic
interaction model of [4] is that it is based on a Fourier transform
in the lateral direction that poses a problem in applying it to
the hyperbolic formulation of the wave action equation models.
Furthermore, for these forecasting models even the calculation
of the one-dimensional quadratic interactions is costly for its
inclusion, as thesemodels are run in real time for very large spacial
and temporal domains. Hence, a lighter quadratic nonlinear model
is required in order to present an alternative approach that still
grasps the essence of this important phenomenon.

Among the aforementioned stochastic works a main advance-
ment in reducing the bi-spectral calculation costs was made by
Agnon and Sheremet [6]. They presented an analytical definition of
the bi-spectra that allows its substitution into the evolution equa-
tionswithout the need for its direct numerical calculation. Still, due
to this operation the resulting interaction coefficients became non-
local, and therefore, difficult to apply to forecasting models.

In a later work, Agnon and Sheremet [7] improved the accuracy
of the nonlinear triad interactions. In addition, they localized
the non-local coefficients by assuming the bottom to be a sum
of oscillating components. More recent progress was made by
Stiassnie and Drimer [14], who managed to localize the non-
local shoaling coefficients of [6] by neglecting harmonic back and
forth energy transfers between the modes and accounting only
for the mean energy transfer. This progress paves the way for
applications of this approach for one-dimensional interactions
also in two-dimensional wave action equation-type forecasting
models, as it significantly lowers the computational effort, while
still incorporating themean energy transfer between all wave triad
combinations.

The present work aims to apply the method of Stiassnie and
Drimer [14] to the more accurate one-dimensional non-local
shoaling coefficients of Agnon and Sheremet [7]. This simplistic
approach is not supposed to compete with more accurate models
such as the ones of Herbers and Burton [10], Agnon and Sheremet
[7] and Janssen et al. [4] but rather improve another line of work—
the simpler localized nonlinear interaction terms appropriate for
wave forecastingmodels given by Elderbeky andBattjes [11], Becq-
Girard et al. [12] and Stiassnie and Drimer [14].

The paper is constructed as follows. In Section 2, an overview
is given on resonant interactions in the near-shore region.
The stochastic model of Agnon and Sheremet [7] is presented
in Section 3 together with the non-local nonlinear shoaling
coefficients. In Section 4 the non-local shoaling coefficients of [7]
are inspected. Then, new local shoaling coefficients are derived and
compared together with the coefficients of [14] to the non-local
coefficients of Stiassnie and Drimer [7]. Numerical calculations are
presented in Section 5, and the work is summarized in Section 6.

2. Resonant interactions

In order to better understand the nonlinear interactions in
the shoaling region, it is helpful to observe the problem in the
frequency and wavenumber domains with respect to resonant

interactions. These resonant interactions (as well as near resonant
ones) represent the majority of energy transfer within the wave
spectrum. For a wave field in deep water, interactions among
different wave components become resonant at order m (in
wave steepness), if the wavenumbers kj and the corresponding
frequencies ωj satisfy resonance conditions. This requires the sum
of wavenumbers and frequencies to satisfy the following relations

ω1 ± ω2 ± · · · ± ωm+1 = 0, k1 ± k2 ± · · · ± km+1 = 0,
m ≥ 1.

(1)

As thewave number and the frequency of eachwave are related
through the dispersion relation, the satisfaction of Eq. (1) in deep
water can not occur atm = 2 (i.e. betweenwave triads). Therefore,
the leading order interaction is of a quadruplet of waves atm = 3,
which is supplemented by weaker interactions at m = 4, 5, . . . .
In shallow to intermediate waters, a bottom-induced free-surface
interference, which does not abide by the dispersion relation, can
allow the satisfaction of this resonance relation (1) even at order
m = 1. These resonant interactions, which consists of bottom
components in addition to surface wave ones, relate to the so-
called Bragg resonance.

The linear class I and class II Bragg resonances occur at order
m = 1 with one bottom component and with two bottom compo-
nents respectively. The nonlinear class III Bragg resonance occurs
at orderm = 2with one bottom component. The class I and class II
Bragg resonances are the wavenumber representation of the main
linear reflection and refraction effects, whereas the class III Bragg
resonance is the main wavenumber representation of the nonlin-
ear triad interactions in shallow to intermediate depths. Eq. (1) can
be used to describe higher orders of linear and nonlinear interac-
tions with more bottom components, but these interactions usu-
ally have a lesser effect. Different terms in wave equations can be
ordered using this classification. For simplification purposes, these
equations can be truncated in a consistent way above a chosen
Bragg class resonance order.

Form = 2 with one bottom component, Eq. (1) takes the form:

ω1 ± ω2 ± ω3 = γ , k1 ± k2 ± k3 ± Kn = δ. (2)

Here, Kn is a bottom component, and small detuning parameters,
δ and γ , have been added in order to represent the near
resonant interactions. Eq. (2) describes the class III Bragg resonance
conditions.

3. Stochastic models

In this section the development of [6,7] is presented. For the
one-dimensional case Agnon and Sheremet obtained the following
equation:
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Here,

Bf = Cg1/2
f Af (4)

with Cgf as the modal group velocity from linear theory and Af as
the modal amplitude. The notation ⟨· · ·⟩ represents an ensemble
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