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a b s t r a c t

The paper deals with modeling of a power-law fluid film flowing down an inclined plane for small
to moderate Reynolds numbers. A model, accurate up to second order [first order] for dilatant
[pseudoplastic] fluids is proposed to describe the nonlinear behavior of the flow. Themodeling procedure
consists of a combination of the lubrication theory and the weighted residual approach using an
appropriate projection basis. A suitable choice of weighting functions allows a significant reduction of
the dimension of the problem. The resulting model is naturally unique, i.e., independent of the particular
form of the trial functions. Reduced models are proposed for the evolution of the local film thickness and
flow rate; their linear spectra are compared to that obtained from the full Orr–Sommerfeld numerical
solution. To obtain the latter, a new formulation of the eigenvalue problem is proposed to overcome the
classical divergence of the apparent viscosity at the free surface. The full model and its reduced forms
all have the advantage of the Benney like model close to criticality. Far from the instability threshold the
full model continues to follow the Orr–Sommerfeld solution up to sufficiently large Reynolds numbers
and gives better predictions than the depth averaging model. An incomplete regularization procedure is
performed to cure the rapid divergence of the reduced two-equation model. Due to its relative simplicity
the latter might be preferred in practice to the full model, at least at the initial stage of the nonlinear
regime. It is also shown that the convective nature of the instability is not affected by the variation of the
power law index.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Falling films on inclined planes are driven by a gravitational
pressure gradient and become unstable when inertia overcomes
hydrostatic pressure effects. The disturbance originates at the free
surface where vorticity is produced by the base flow shear stress.
Because of its advection by the base flow, the produced vorticity
becomes out of phase with the disturbed interface so as to cause
the amplification of the interface disturbance. The base flow then
undergoes a Hopf bifurcation leading to periodic two dimensional
nonlinear waves which evolve into a variety of patterns depending
on the flow conditions. It is established both from numerical
simulations and experiments that solitary wave structures play a
central role in the long time behavior of the flow. As shown by
the computations of Malamataris et al. [1], the velocity profiles
beneath solitary waves are strongly deformed in comparison with
the parabolic base flow velocity and the dynamics quite delicate.
It is therefore useful for a fundamental understanding of the flow
to develop reduced systems that can be exploited both analytically
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and numerically. Since the instability manifests itself in surface
waves whose wavelength is, except for very small inclination,
much larger than the film thickness, long waves of the Benney
type [2] allow description of the flow development near criticality.
The flow variables are then all enslaved to the local interface
shape. Even though the Benney equation (BE) contains different
physical mechanisms and is potentially capable of describing the
near critical nonlinear behavior, it loses its physical relevance
when the convective effects become significant, because of the
production of shorter waves. The solutions of the BE then depart
from those of the full Navier–Stokes equations and, at some
distance beyond the stability threshold, they exhibit nonphysical
finite time catastrophic behavior [3]. To overcome some of the
drawbacks associated to the BE, several improvements were
recently proposed. The regularization procedure developed by
Ooshida [4] allows to avoid the occurrence of time blowup but fails
to serve as an accurate model at moderate Reynolds numbers as
its solitary wave solution exhibits unrealistically small amplitudes
and velocities. Another single evolution equation including the
second order dissipative effects via a suitable scalingwas proposed
by Panga and Balakotaiah [5]. Ruyer-Quil and Manneville [6] have
shown that the Panga and Balakotaiah model can be modified
such that its inertial terms correspond to Ooshida’s equation. The
failure of the long wave models to correctly describe nonlinear
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behaviors far from criticality is partly due to their incapacity
to capture all of the inertia effects. The way to improve the
modeling would be, according to Ruyer-Quil and Manneville [6] to
incorporate the flow rate which becomes a genuine variable just
after the wave formation. Such a model was first introduced by
Shkadov [7] by using an integral boundary layer (IBL) approach.
This theory combines the long wave assumption with the depth
averaging method of Karman Polhansen type. In spite of its
success to describe nonlinear regimes for moderate Reynolds
numbers, the IBL approach does not accurately predict the flow
behavior close to the stability threshold as the BE does. This
defect is, as we will see later on, due to the fact that the IBL is
coherent only up to zeroth order in the long wave parameter near
criticality. A better account of the first order convective terms
near criticality is therefore required to remove this drawback. The
remedy was found by Ruyer-Quil and Manneville [8,9] by using a
weighted residual integral boundary layer (WRIBL) approach. Their
model, developed for both first and second order approximations,
corrected the inability of the Shkadov approach to match the
linear stability threshold andwas found to yield bounded solutions
for a larger range of Reynolds numbers than in the case of the
BE. It has been demonstrated [8] that both first and second
order models compared well with the experiments conducted
with alcohol by Kapitza and Kapitza [10] on a vertical plane.
However, only the second order model compared well with the
experimental observation of Liu et al. [11] in water glycerin
solution on an inclined plane. The WRIBL approach was extended
to nonisothermal flows by Ruyer-Quil and co-workers [12,13] and
to two layer flows by Amaouche et al. [14].

The objective of the present study is the derivation of nonlinear
evolution equations for falling power law fluid similar to those
obtained by Ruyer-Quil and co-workers [8,9,12,13] for Newtonian
fluid. Indeed, it is important to understand how non-Newtonian
effects affect the dynamics of falling film flows since they are
present in a wide range of physical and technological applications.
For instance, these specific effects are encountered in situations
such as plastic manufacturing, coating processes, biological fluid
motions, geological flows. Our interest is specifically with fluids
whose rheological behavior can be described by a power law
model which is a relatively simple constitutive equation. In that
area, there are not so many investigations as in Newtonian case.
Lin and Hwang [15] used the method of multiple scales to solve
a nonlinear equation of Benney type. Their results indicate that
subcritical instability and explosive solution occur at small power
law index, supercritical andunconditional stable region exist solely
when that index is greater than some critical value. A long wave of
Benney type equationwere also used andnumerically integrated in
periodic domain byMiladinova et al. [16]who found that the shape
and amplitude of traveling waves are strongly dependent on the
non-Newtonian properties of the fluid. The boundary layer integral
method were applied by Dandapat and Mukhopadhyay [17] to
derive an evolution equation for the so-called kinematic and
inertial waves. They found, among other results, that the power
law exponent plays a prominent role in controlling the surface
tension effects. In a recent paper Sisoev et al. [18] present a
bifurcation analysis of steady traveling waves by using a similar
equation to that derived in [17]. Similar limitations to those
described above were also encountered when using lubrication
theory as well as Shkadov’s procedure for non-Newtonian liquid
film flows. To cure these limitations, we extend the idea developed
in [12] for Newtonian fluids. The paper is organized as follows.
Section 2 is devoted to the formulation of the governing equations.
In Section 3, the problem is reformulated in terms of dimensionless
boundary layer equations where third and higher order terms are
neglected. The derivation of both first and second order system
of evolution equations is performed in Section 4. More tractable
models of reduced dimensionality are obtained in Section 5 and
their linear stability is discussed in Section 6. Concluding remarks
are presented in Section 7.

Fig. 1. Schematic of the physical problem.

2. Governing equations

The physical model of the problem is depicted in Fig. 1. A power
law liquid of constant density ρ, consistency K and index n, flows
under gravity along an infinitely long flat plate which is inclined at
an angle β to the horizontal. A coordinate system (x, y) is adopted
with x as the downstreamcoordinate and y beingmeasured normal
to the plate. The surface tension coefficient between the liquid and
the surrounding passive medium (with pressure pa = 0) is σ and
the acceleration due to gravity is g. Denoting by v = (u, v), p and τ
the velocity field, the pressure and the stress tensor, conservation
of mass and momentum then read:

div v = 0, (1)
ρ(∂t + v · grad)v = −gradp + div τ + ρ g, (2)

where τ = 2Kηd with η = γ̇ n−1, γ̇ denoting the second invariant
2dijdij of the strain rate tensor d. The index n indicates the degree

of the non-Newtonian behavior and the greater is the departure
from unity the more pronounced are the non-Newtonian effects,
n < 1 corresponds to shear thinning (pseudoplastic) behavior
while n > 1 represents shear thickening (dilatant) behavior. The
above equations are subject to the boundary conditions

on y = 0 u = v = 0, (3)
on y = h(x, t) ht + u hx − v = 0, (4)
(−p + σdivn)n + τ · n = 0. (5)

Expressing no slip on the rigid plate, the impermeability of the
free surface y = h(x, t) and equilibrium of all forces acting on it
respectively, n being the unit vector normal to the free surface. The
flat film solution for h(x, t) = h0 has the form [16]

Ub =
n

n + 1


ρ g sinβ

K

1/n 
h1+1/n
0 − (h0 − y)1+1/n


,

Vb = 0.
(6)

This is analogous to the Nusselt solution for Newtonian fluid flow.

3. Dimensionless boundary layer equations

At low tomoderate Reynolds numbers, the dominant instability
of the flat film state is known to involve interfacial distortion and
to have wavelengths much longer than the film thickness, except
for slightly inclined planes (β less than about 1° for water) or
for fluids with low surface tension. We will not consider these
extreme conditions for which the instability changes to become
a shortwave instability. So, to remove dimensions and express
(1)–(5) in their dimensionless form we will assume two length
scales, a typicalwavelength l0 and h0 as the characteristicmeasures
of distances downslope and transverse to the film respectively. The
streamwise velocity u and the transverse velocity v are scaledwith

the depthwise averaged velocity um =
n

2n+1


ρ g sinβ

K

1/n
h1+1/n
0

and ϵum respectively, with ϵ = h0/l0 being a stretch parameter
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