


available at www.sciencedirect.com

Article

A shaped binderless ZSM-11 zeolite catalyst for direct amination of (isobutene to *tert*-butylamine

Wanshuo Zhang ^{a,b,†}, Shangyao Gao ^{b,c,†}, Sujuan Xie ^b, Hui Liu ^{b,d}, Xiangxue Zhu ^b, Yongchen Shang ^{a,*}, Shenglin Liu ^{b,#}, Longya Xu ^b, Ye Zhang ^e

- ^a College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
- ^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- ^c University of Chinese Academy of Sciences, Beijing 100049, China
- d Research and Development Center, Sinochem Quanzhou Petrochemical Co., Ltd., Quanzhou 362103, Fujian, China
- e PetroChina Fushun Petrochemical Company, Fushun 113008, Liaoning, China

ARTICLE INFO

Article history:
Received 20 October 2016
Accepted 22 November 2016
Published 5 January 2017

Keywords:
Binderless zeolite
ZSM-11
Amination
Isobutene
Tert-butylamine

ABSTRACT

A shaped binderless and two binder-containing ZSM-11 zeolite catalysts were prepared and characterized by powder X-ray diffraction, N₂ adsorption-desorption, and pyridine adsorption-infrared measurements. The binderless catalyst was synthesized using a dry-gel conversion technique, in which 1,6-hexanediamine and tetrabutylammonium bromide were used as structure-directing agents and no other alkaline materials were added. The catalytic performance of the zeolites in the direct amination of isobutene to *tert*-butylamine was evaluated in a fixed-bed reactor. By virtue of its high crystallinity as well as its good mechanical strength, the shaped binderless ZSM-11 catalyst showed a higher rate of formation of *tert*-butylamine than did the binder-containing catalysts.

© 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

Published by Elsevier B.V. All rights reserved.

1. Introduction

Tert-butylamine is an important raw material and pharmaceutical intermediate, and the direct amination of isobutene over zeolite catalysts to give tert-butylamine has been reported to be an environmentally benign and economical process. MFI and BEA have been found to be superior to other materials [1,2]. Zeolites ZSM-5 and ZSM-11 have similar framework densities and pore sizes, but differences in their channels result in a higher selectivity for aromatics in the aromatization of 1-hexene over ZSM-11 compared with that over ZSM-5 [3]. In

the case of the direct amination of isobutene, we found that ZSM-11 showed slightly higher activity than ZSM-5 when using similar crystal size, SiO_2/Al_2O_3 molar ratio and acidity.

Zeolites synthesized by conventional techniques are usually obtained in powder form. However, for practical applications, the zeolite powder should be formed into catalyst particles with a certain shape, size, and mechanical strength by using inert materials as binders [4]. Unfortunately, this causes the reduction of the active zeolite component and blocks part of the channel windows in the formed catalysts, which consequently results in a considerable reduction in the catalytic performance

This work was supported by K.C.Wong Education Foundation, Hong Kong (201611), and Youth Innovation Promotion Association, CAS (20120155). DOI: 10.1016/S1872-2067(17)62756-6 | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 38, No. 1, January 2017

^{*} Corresponding author. Tel: +86-13936570503; E-mail: yongchenshang@163.com

[#] Corresponding author. Tel: +86-411-84379968; E-mail: slliu@dicp.ac.cn

[†] These authors contributed equally to this work.

of the zeolites [5]. It would therefore be interesting to prepare a mechanically stable and self-supporting zeolite catalyst, in which the active components are protected, namely, a binderless zeolite catalyst [6].

Self-bonded ZSM-5 pellets are readily prepared at 170 °C under hydrothermal conditions from a gel with the following composition: $a \text{ Li}_2\text{O} : b \text{ Na}_2\text{O} : 2b \text{ TPABr} : b \text{ A1}_2\text{O}_3 : 150 \text{ SiO}_2$: 490 H₂O, with $8 \le a \le 9$ and $14 \le b \le 16$ (TPABr = tetrapropylammonium bromide). If the Li₂O is replaced with Na₂O or K₂O, only nonpelleted, powdered ZSM-5 samples can be prepared, which underlines the role of the LiAlO2 binder in the system [7]. Recently, shaped binderless ZSM-5 zeolites have been prepared from aluminosilicate extrudates using a dry-gel conversion (DGC) technique, in which the introduction of amines into the steam favored the formation of nanosized ZSM-5 zeolite. Of particular note, the morphology of these aluminosilicate extrudates was retained in the crystallization process [8]. Self-bonded pellets of ZSM-11 with high mechanical resistance could also be obtained from initial gels with a composition of 1 Li₂O: (3.25-7.5) Na₂O: (3.25-7.5) Al₂O₃: 150 SiO₂ : (0.65-1.5) TBABr : 490 H₂O [9].

TPABr [10], tetrabutylammonium bromide (TBABr) [11] and 1,6-hexanediamine (HDA) [12] are suitable structure directing agents (SDAs) for the synthesis of ZSM-5, ZSM-11, and ZSM-5/ZSM-11, respectively. However, ZSM-11 synthesized using TBABr and HDA as co-SDAs has not yet been reported. Here, a shaped binderless ZSM-11 catalyst was prepared using the DGC method, using TBABr and HDA as co-SDAs in the synthesis and without adding other alkaline materials. The obtained sample was then employed for the direct amination of isobutene. In addition, the performance of the binderless and binder-containing ZSM-11 catalysts (HZSM-11+Al₂O₃ and HZSM-11+SiO₂) in the amination reaction was compared.

2. **Experimental**

2.1. Preparation

Na-ZSM-11 zeolite powder with a framework SiO₂/Al₂O₃ molar ratio of 61.6, and containing 2.33 wt% Na2O and 10.4 wt% TBABr was synthesized by following a previously reported procedure [3]. The powder was mixed with silica sol (SiO2: 30 wt%, Na₂O: 0.31 wt%) to form a cylindrical extrudate that was 1.8-2.2 mm in diameter and 3-7 mm in length. The dried sample containing 30 wt% of silica was denoted S1. For comparison, S2, which contained 30 wt% of alumina, was prepared by using boehmite instead of silica sol as the binder.

S1 was recrystallized using the DGC method. First, 4 g S1 was placed in a stainless-steel tube fixed and supported in a horizontal position in a stainless-steel autoclave with a Teflon lining. Then 1.2 g HDA and 4 mL deionized water were poured into the bottom of the Teflon-lined autoclave taking care that the solid sample did not come into direct contact with the liquid [13]. The autoclave was heated at 175 °C for 10.5 h, and then cooled to room temperature. The solid sample was dried at 120 °C for 2 h and then calcined in air at 540 °C for 5 h. This sample was denoted S3.

All three samples (S1, S2, and S3) were converted to the protonic form by conventional ion exchange in aqueous NH₄NO₃ solution [14], followed by calcination (550 °C, 4 h, air). The resultant samples were denoted Cat-A, Cat-B, and Cat-C, respectively.

2.2. Characterization

The samples were characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed desorption of NH3 (NH3-TPD), infrared spectrascopy of adsorbed pyridine (Py-IR), high-resolution transmission electron microscopy (HRTEM) and nuclear magnetic resonance (NMR) techniques as described elsewhere [15]. The side-pressure strength of the samples was tested using a ZQJ-II intelligent particle strength tester.

2.3. Reaction

The direct amination of isobutene to tert-butylamine was carried out in a stainless-steel fixed-bed reactor and the mode of operation was down-flow. All the samples were pressed, crushed, and sieved to give a particle size of 0.38-0.85 mm before they were loaded into the reactor. Initially, 5 g of the catalyst was loaded into the center of the reactor and pretreated at 500 °C for 1 h in N2. The reactor was cooled to 250 °C, and then liquid NH₃ was pumped in from the top to fully fill the reactor before isobutene was introduced. Ma et al. [16,17] have reported that this feeding sequence is favorable for the reaction. After 2 h, it was confirmed that the NH₃/i-C₄H₈ molar ratio remained stable at 4:1 by measuring the concentrations of the educts, and the products were analyzed on-line with an Agilent 7980B gas chromatograph equipped with a flame ionization detector (FID) and a PONA capillary column.

The isobutene conversion (Cisobutene), tert-butylamine selectivity ($S_{tert\text{-butylamine}}$) and formation rate of tert-butylamine (V_{for-} mation) were calculated according to the following equations:

$$C_{\text{isobutene}} = \frac{x_{tert\text{-butylamine}} + x_{C_8}}{x_{\text{isobutene}} + x_{tert\text{-butylamine}} + x_{C_8}} \times 100\%$$
 (1)

$$S_{tert\text{-butylamine}} = \frac{X_{tert\text{-butylamine}}}{X_{tert\text{-butylamine}} + X_{C_8}} \times 100\%$$
 (2)

$$S_{tert\text{-butylamine}} = \frac{X_{tert\text{-butylamine}} + X_{C_8}}{X_{tert\text{-butylamine}}} \times 100\%$$

$$V_{\text{formation}} = \frac{F_{M\text{isobutene}} \times C_{\text{isobutene}} \times S_{tert\text{-butylamine}}}{m_{\text{cat}}} \times 10^6$$
(2)

where *x*_{tert-butylamine} is the molar percentage of *tert*-butylamine in the products, x_{C8} is the molar percentage of C_8 hydrocarbons in the products, $x_{isobutene}$ is the molar percentage of isobutene in the products, $F_{\rm M\ isobutene}$ is the molar flow rate of isobutene (μ mol/h), and m_{cat} is the mass of the catalyst (g).

3. Results and discussion

3.1. Synthesis of binderless ZSM-11 zeolite catalyst

First, two binder-containing ZSM-11 samples (Cat-A and Cat-B) were prepared, and their XRD patterns are shown in Fig. 1. The relative crystallinity (RC) of the sample was calculated

Download English Version:

https://daneshyari.com/en/article/6506074

Download Persian Version:

https://daneshyari.com/article/6506074

<u>Daneshyari.com</u>