

Article

Promotional roles of ZrO₂ and WO₃ in V₂O₅-WO₃/TiO₂-ZrO₂ catalysts for NO_x reduction by NH₃: Catalytic performance, morphology, and reaction mechanism

Yaping Zhang ^a, Longfei Wang ^a, Juan Li ^a, Huiyan Zhang ^{a,*}, Haitao Xu ^{a,b}, Rui Xiao ^a, linjun Yang ^a

^a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China

^bNanjing Yuhang Environmental Technology Company, Nanjing 211102, Jiangsu, China

ARTICLE INFO

Article history: Received 23 May 2016 Accepted 9 July 2016 Published 5 November 2016

Keywords: Zirconia Tungsten oxide Selective catalytic reduction by ammonia In situ infrared diffuse-reflectance Fourier-transform spectroscopy Reaction mechanism

ABSTRACT

 V_2O_5/TiO_2 - ZrO_2 catalysts containing various amounts of WO₃ were synthesized. The catalyst morphologies, catalytic performances, and reaction mechanisms in the selective catalytic reduction of NO_x by NH₃ were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy, temperature-programmed reduction (TPR), X-ray diffraction, and the Brunauer-Emmett-Teller (BET) method. The BET surface area of the triple oxides increased with increasing ZrO₂ doping but gradually decreased with increasing WO₃ loading. Addition of sufficient WO₃ helped to stabilize the pore structure and the combination of WO₃ and ZrO₂ improved dispersion of all the metal oxides. The mechanisms of reactions using V₂O₅-9%WO₃/TiO₂-ZrO₂ and V₂O₅-9%WO₃/TiO₂ were compared by using either a single or mixed gas feed and various pretreatments. The results suggest that both reactions followed the Eley-Ridel mechanism; however, the dominant acid sites, which depended on the addition of WO₃ or ZrO₂, determined the pathways for NO_x reduction, and involved [NH₄+-NO-Brönsted acid site]* and [NH₂-NO-Lewis acid site]* intermediates, respectively. NH₃-TPR and H₂-TPR showed that the metal oxides in the catalysts were not reduced by NH₃ and O₂ did not reoxidize the catalyst surfaces but participated in the formation of H₂O and NO₂.

> © 2016, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

The conventional technique for the control of NO_x emissions is selective catalytic reduction (SCR) of NO_x by NH₃ [1] using various commercial catalysts containing V₂O₅, WO₃, and TiO₂. However, the use of such commercial catalysts is limited because of their low activities (300–400 °C, 85%) [2]. Cheap transition-metal-doped catalysts with exceptional catalytic performances are now widely used in several industrial processes [3]. Previous studies have shown that TiO₂-ZrO₂ supports have higher thermal stabilities and amounts of acid sites than do pure TiO₂ and ZrO₂ [4]. In this study, we investigated and compared the NH₃-SCR mechanisms (above 300 °C) over V₂O₅-x%WO₃/TiO₂-ZrO₂ and V₂O₅/9%WO₃-TiO₂ catalysts.

Although the NH₃-SCR mechanism has been widely studied, it is still the subject of much debate. This is because (1) different catalysts have been used, resulting in different active sites and (2) different temperatures have been used in NH₃-SCR reactions over different catalysts. Recently, the reactions $NH_{3(ads)} \rightarrow NO_{(g)} + O_{2(g)}$ and $NO_{(ads)} + O_{2(ads)} \rightarrow NH_{3(g)}$ over dif-

^{*} Corresponding author. Tel: +86-25-83790667; Fax: +86-25-83791003; E-mail: 101011613@seu.edu.cn

This work was supported by the National Natural Science Foundation of China (51306034), Key Research & Development Projects of Jiangsu Province (BE2015677) and the National Basic Research Program of China (2013CB228505).

DOI: 10.1016/S1872-2067(16)62510-X | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 37, No. 11, November 2016

ferent catalysts at different temperatures have been studied and possible reaction pathways have been proposed [5-8]. However, the adsorption behaviors of NH3 and NO at different temperatures were not clear, e.g., whether and how NH3(g), $NO_{(g)}$, and $NO_{(g)} + O_{2(g)}$ are adsorbed on the catalyst surface above 300 °C. The differences among the adsorption intensities of these gases are also unclear. Most previous theories have indicated that the reaction involves sequential H abstraction (or oxidation) of NH3 species to give the coordinated form of NH3 or the protonated form, i.e., NH4+, followed by partial oxidation by metal oxides (V2O5, WO3, and TiO2) [5-8]. The catalyst surface could therefore be reduced by NH3 or NH4+. However, temperature-programmed reduction by NH₃ (NH₃-TPR) of the catalysts has not been investigated, and the proposed catalyst surface reduction by NH3 is controversial. All these points have important implications for the NH₃-SCR mechanism, and intensive research to clarify these issues is needed.

In this study, V₂O₅-WO₃/TiO₂-ZrO₂ catalysts with various WO₃ loadings were synthesized and used in NH₃-SCR. The effects of the amounts of WO₃ and ZrO₂ on the catalytic performances and reaction mechanisms over V₂O₅-WO₃/TiO₂-ZrO₂ were investigated using the Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), TPR, and in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS).

2. Experimental

2.1. Catalyst preparation

The V₂O₅-x%WO₃/TiO₂-ZrO₂ catalysts were prepared by impregnation of a TiO₂-ZrO₂ solid solution with ammonium tungstate hydrate and ammonium vanadate.

A TiO₂-ZrO₂ solid solution (Ti:Zr molar ratio 1:1) was prepared using a precipitation method. ZrOCl₂·8H₂O and TiCl₄ (Sinophram Chemical Reagent) were used as precursors. Ammonia water (25%–28%) was added dropwise to the metal precursor solution at 25 °C until the pH was between 9 and 10. The obtained milky slurry was aged in the solution at 25 °C for 24 h. The hydroxide was filtered off, washed with deionized water, and dried at 110 °C for 12 h. The samples were calcined at 450 °C in air for 3 h before milling and screening to 60 mesh.

An incipient wetness impregnation method was used to synthesize $x\%WO_3/TiO_2$ -ZrO₂ (x = 0, 6, 9, 12, weight ratio). (NH₄)₁₀W₁₂O₄₁·xH₂O (Sinophram Chemical Reagent) was added to the TiO₂-ZrO₂ carrier and the mixture was stirred at 35 °C for 2 h. The residue obtained by evaporation at 80 °C was dried at 110 °C for 12 h. The samples were calcined at 450 °C in air for 3 h, and milled and screened to 60 mesh. The same procedure was used to synthesize 9%WO₃/TiO₂ with anatase TiO₂ as the carrier.

A wet impregnation method was used to synthesize $1\%V_2O_5-x\%WO_3/TiO_2-ZrO_2$ and $1\%V_2O_5-9\%WO_3/TiO_2$ as follows. NH₄VO₃ (Sinophram Chemical Reagents) was added to $x\%WO_3/TiO_2$ -ZrO₂ powder and $9\%WO_3/TiO_2$ powder; the rest of the process was the same as that used to prepare $x\%WO_3/TiO_2$ -ZrO₂.

We denote $1\%V_2O_5-x\%WO_3/TiO_2-ZrO_2$ by $x\%WO_3$, where x represents the amount of WO₃ in the catalyst.

2.2. Catalyst characterization

XRD patterns of the catalysts were obtained using an XD-3 diffractometer (Beijing PEPSEE, China) with Cu K_{α} radiation (λ = 0.15406 nm). The specific surface areas of the catalysts were measured based on N₂ adsorption-desorption at liquid N₂ temperature (-196 °C) using a Micromeritics F-sorb 3400 adsorption apparatus (Beijing Jinaipu, China). NH₃-TPR was performed in a quartz U-tube reactor connected to a thermal conductivity detector, using an NH₃-He mixture (0.503 vol% NH₃) as a probe. TPR was performed from 25 to 700 °C at a rate of 10 °C/min.

In situ (DRIFTS) was performed using a Nicolet 6700 FT-IR instrument (Thermo Electron Corporation, USA) with a Harrick accessory (HTC-3, Harrick Scientific Corporation, USA) in the wavenumber range 400–4000 cm⁻¹ at a 4 cm⁻¹ resolution. NH₃-adsorbed in situ DRIFTS was performed as follows. (1) A thin, intact, self-supporting wafer of the catalyst (10 mg) was prepared and mounted inside a high-temperature cell (HTC-3, Harrick Scientific Corporation, USA) and subjected to a high-purity N₂ stream at 400 °C for 1 h. (2) After cooling to room temperature, the wafer was exposed to an NH₃ (99.999%) stream at a flow rate of 5 mL/min for 30 min. (3) The wafer was flushed with a high-purity N₂ stream for 30 min. (4) IR spectra were recorded at various target temperatures in a high-purity N₂ stream; the temperature was increased at a rate of 10 °C/min.

2.3. Catalyst activity test

The catalytic activity was investigated in a fixed-bed stainless-steel reactor (i.d. 6 mm) at 200–450 °C, using 300 mg of catalyst. A gas mixture of 0.08% NO, 0.08% NH₃, and 5% O₂ (by volume) was fed into the reactor and N₂ was used to give a total flow rate of 100 mL/min (gas hourly space velocity (GHSV) = 20000 h⁻¹). The NO and NO₂ concentrations were continually monitored using a flue gas analyzer (Testo 350-XL).

3. Results and discussion

3.1. Specific surface area and pore size

The specific surface areas and pore size distributions of the catalysts are shown in Table 1 and Fig. 1. The pore size distributions clearly show that the amounts of pores of sizes 384.2-8.3 nm and 3.1-1.7 nm were unchanged by WO₃ addition, but the amounts of pores of size 8.3-3.9 nm increased greatly. This indicates that WO₃ addition enhanced the thermal stability of the pore structure, especially of pores of size 8.3-3.9 nm. The BET surface areas (*S*_{BET}) decreased with increasing WO₃ loading. The XRD patterns (Fig. 2) show that no crystalline tungsten oxide was present on the catalyst surfaces. This suggests that amorphous WO₃ was dispersed on the surface of the TiO₂-ZrO₂ support and occupied the pores, decreasing the sur-

Download English Version:

https://daneshyari.com/en/article/6506110

Download Persian Version:

https://daneshyari.com/article/6506110

Daneshyari.com