

Article

Promotional roles of ZrO2 and WO3 in V2O5‐WO3/TiO2‐ZrO2 catalysts for NO*^x* **reduction by NH3: Catalytic performance, morphology, and reaction mechanism**

Yaping Zhang ^a, Longfei Wang ^a, Juan Li ^a, Huiyan Zhang ^{a,*}, Haitao Xu ^{a,b}, Rui Xiao ^a, linjun Yang ^a

a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing *210096, Jiangsu, China*

^b*Nanjing Yuhang Environmental Technology Company, Nanjing 211102, Jiangsu, China*

ARTICLE INFO ABSTRACT

Article history: Received 23 May 2016 Accepted 9 July 2016 Published 5 November 2016

Keywords: Zirconia Tungsten oxide Selective catalytic reduction by ammonia In situ infrared diffuse-reflectance Fourier‐transform spectroscopy Reaction mechanism

 V_2O_5/TiO_2 -ZrO₂ catalysts containing various amounts of WO₃ were synthesized. The catalyst morphologies, catalytic performances, and reaction mechanisms in the selective catalytic reduction of NO_x by NH₃ were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy, temperature-programmed reduction (TPR), X-ray diffraction, and the Brunauer-Emmett-Teller (BET) method. The BET surface area of the triple oxides increased with increasing $ZrO₂$ doping but gradually decreased with increasing WO₃ loading. Addition of sufficient WO₃ helped to stabilize the pore structure and the combination of WO_3 and ZrO_2 improved dispersion of all the metal oxides. The mechanisms of reactions using V_2O_5 -9%WO₃/TiO₂-ZrO₂ and V_2O_5 -9%WO₃/TiO₂ were compared by using either a single or mixed gas feed and various pretreatments. The results suggest that both reactions followed the Eley-Ridel mechanism; however, the dominant acid sites, which depended on the addition of WO₃ or ZrO₂, determined the pathways for NO_x reduction, and involved $\lceil NH_4^* - NO - Bri$ önsted acid site]* and $\lceil NH_2 - NO - Lewis$ acid site]* intermediates, respectively. NH₃-TPR and H₂-TPR showed that the metal oxides in the catalysts were not reduced by NH₃ and O_2 did not reoxidize the catalyst surfaces but participated in the formation of H_2O and NO_2 .

> © 2016, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

The conventional technique for the control of NO_x emissions is selective catalytic reduction (SCR) of NO_x by $NH₃$ [1] using various commercial catalysts containing V_2O_5 , WO₃, and TiO₂. However, the use of such commercial catalysts is limited because of their low activities $(300-400\degree C, 85\%)$ [2]. Cheap transition-metal-doped catalysts with exceptional catalytic performances are now widely used in several industrial processes [3]. Previous studies have shown that $TiO₂-ZrO₂$ supports have higher thermal stabilities and amounts of acid sites than do pure $TiO₂$ and $ZrO₂$ [4]. In this study, we investigated and compared the NH₃-SCR mechanisms (above $300 °C$) over V₂O₅-*x*%WO₃/TiO₂-ZrO₂ and V₂O₅/9%WO₃-TiO₂ catalysts.

Although the NH_3 -SCR mechanism has been widely studied, it is still the subject of much debate. This is because (1) different catalysts have been used, resulting in different active sites and (2) different temperatures have been used in NH₃-SCR reactions over different catalysts. Recently, the reactions $NH_{3(ads)} \rightarrow NO_{(g)} + O_{2(g)}$ and $NO_{(ads)} + O_{2(ads)} \rightarrow NH_{3(g)}$ over dif-

^{*} Corresponding author. Tel: +86‐25‐83790667; Fax: +86‐25‐83791003; E‐mail: 101011613@seu.edu.cn

This work was supported by the National Natural Science Foundation of China (51306034), Key Research & Development Projects of Jiangsu Province (BE2015677) and the National Basic Research Program of China (2013CB228505).

DOI: 10.1016/S1872-2067(16)62510-X | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 37, No. 11, November 2016

ferent catalysts at different temperatures have been studied and possible reaction pathways have been proposed [5-8]. However, the adsorption behaviors of NH₃ and NO at different temperatures were not clear, e.g., whether and how $NH_{3(g)}$, $NO(g)$, and $NO(g) + O_{2(g)}$ are adsorbed on the catalyst surface above 300 °C. The differences among the adsorption intensities of these gases are also unclear. Most previous theories have indicated that the reaction involves sequential H abstraction (or oxidation) of NH_3 species to give the coordinated form of NH₃ or the protonated form, i.e., NH₄+, followed by partial oxidation by metal oxides (V₂O₅, WO₃, and TiO₂) [5–8]. The catalyst surface could therefore be reduced by $NH₃$ or $NH₄$ ⁺. However, temperature-programmed reduction by NH₃ (NH₃-TPR) of the catalysts has not been investigated, and the proposed catalyst surface reduction by $NH₃$ is controversial. All these points have important implications for the $NH₃$ -SCR mechanism, and intensive research to clarify these issues is needed.

In this study, $V_2O_5-WO_3/TiO_2-ZrO_2$ catalysts with various $WO₃$ loadings were synthesized and used in NH₃-SCR. The effects of the amounts of WO_3 and ZrO_2 on the catalytic performances and reaction mechanisms over $V_2O_5-WO_3/TiO_2$ -ZrO₂ were investigated using the Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), TPR, and in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS).

2. Experimental

2.1. Catalyst preparation

The V_2O_5 - $x\%$ WO₃/TiO₂-ZrO₂ catalysts were prepared by impregnation of a $TiO₂-ZrO₂$ solid solution with ammonium tungstate hydrate and ammonium vanadate.

A TiO₂-ZrO₂ solid solution (Ti:Zr molar ratio 1:1) was prepared using a precipitation method. ZrOCl₂·8H₂O and TiCl₄ (Sinophram Chemical Reagent) were used as precursors. Ammonia water $(25\% - 28\%)$ was added dropwise to the metal precursor solution at 25 $^{\circ}$ C until the pH was between 9 and 10. The obtained milky slurry was aged in the solution at 25 \degree C for 24 h. The hydroxide was filtered off, washed with deionized water, and dried at 110 \degree C for 12 h. The samples were calcined at 450 °C in air for 3 h before milling and screening to 60 mesh.

An incipient wetness impregnation method was used to synthesize $x\%$ WO₃/TiO₂-ZrO₂ ($x = 0, 6, 9, 12$, weight ratio). $(NH_4)_{10}W_{12}O_{41} \cdot xH_2O$ (Sinophram Chemical Reagent) was added to the TiO₂-ZrO₂ carrier and the mixture was stirred at 35 °C for 2 h. The residue obtained by evaporation at 80 \degree C was dried at 110 °C for 12 h. The samples were calcined at 450 °C in air for 3 h, and milled and screened to 60 mesh. The same procedure was used to synthesize $9\%WO_3/TiO_2$ with anatase TiO_2 as the carrier.

A wet impregnation method was used to synthesize 1%V₂O₅-*x*%WO₃/TiO₂-ZrO₂ and 1%V₂O₅-9%WO₃/TiO₂ as follows. NH₄VO₃ (Sinophram Chemical Reagents) was added to *x*%WO₃/TiO₂-ZrO₂ powder and 9%WO₃/TiO₂ powder; the rest of the process was the same as that used to prepare *x*%WO3/TiO2‐ZrO2.

We denote $1\frac{6}{2}C_5 - x\frac{6}{10}W_3$ /TiO₂-ZrO₂ by $x\frac{6}{10}W_3$, where *x* represents the amount of WO₃ in the catalyst.

2.2. Catalyst characterization

XRD patterns of the catalysts were obtained using an XD-3 diffractometer (Beijing PEPSEE, China) with Cu *K_α* radiation (λ $= 0.15406$ nm). The specific surface areas of the catalysts were measured based on N_2 adsorption-desorption at liquid N_2 temperature $(-196 °C)$ using a Micromeritics F-sorb 3400 adsorption apparatus (Beijing Jinaipu, China). NH₃-TPR was performed in a quartz U-tube reactor connected to a thermal conductivity detector, using an NH₃-He mixture $(0.503 \text{ vol\% NH}_3)$ as a probe. TPR was performed from 25 to 700 \degree C at a rate of 10 °C/min.

In situ (DRIFTS) was performed using a Nicolet 6700 FT-IR instrument (Thermo Electron Corporation, USA) with a Harrick accessory (HTC-3, Harrick Scientific Corporation, USA) in the wavenumber range $400-4000$ cm⁻¹ at a 4 cm⁻¹ resolution. $NH₃$ -adsorbed in situ DRIFTS was performed as follows. (1) A thin, intact, self-supporting wafer of the catalyst (10 mg) was prepared and mounted inside a high-temperature cell (HTC-3, Harrick Scientific Corporation, USA) and subjected to a high-purity N_2 stream at 400 °C for 1 h. (2) After cooling to room temperature, the wafer was exposed to an $NH₃$ (99.999%) stream at a flow rate of 5 mL/min for 30 min. (3) The wafer was flushed with a high-purity N_2 stream for 30 min. (4) IR spectra were recorded at various target temperatures in a high-purity N_2 stream; the temperature was increased at a rate of 10 °C/min.

2.3. Catalyst activity test

The catalytic activity was investigated in a fixed-bed stainless-steel reactor (i.d. 6 mm) at 200-450 °C, using 300 mg of catalyst. A gas mixture of 0.08% NO, 0.08% NH₃, and 5% O₂ (by volume) was fed into the reactor and N_2 was used to give a total flow rate of 100 mL/min (gas hourly space velocity (GHSV) = 20000 h-1). The NO and $NO₂$ concentrations were continually monitored using a flue gas analyzer (Testo 350-XL).

3. Results and discussion

3.1. Specific surface area and pore size

The specific surface areas and pore size distributions of the catalysts are shown in Table 1 and Fig. 1. The pore size distributions clearly show that the amounts of pores of sizes $384.2-8.3$ nm and $3.1-1.7$ nm were unchanged by WO₃ addition, but the amounts of pores of size 8.3-3.9 nm increased greatly. This indicates that $WO₃$ addition enhanced the thermal stability of the pore structure, especially of pores of size 8.3–3.9 nm. The BET surface areas (S_{BET}) decreased with increasing $WO₃$ loading. The XRD patterns (Fig. 2) show that no crystalline tungsten oxide was present on the catalyst surfaces. This suggests that amorphous WO_3 was dispersed on the surface of the $TiO₂$ - $ZrO₂$ support and occupied the pores, decreasing the surDownload English Version:

<https://daneshyari.com/en/article/6506110>

Download Persian Version:

<https://daneshyari.com/article/6506110>

[Daneshyari.com](https://daneshyari.com)