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a b s t r a c t

A two-layer shear flow is studied for inviscid and viscous fluids. Here, the layers flow between two
horizontal walls and are buoyantly stable. Each layer contains a finite amount of shear and the horizontal
velocity is specified such that it is continuous when unperturbed. The interface between the two layers
is given a small sinusoidal perturbation and the subsequent response of the system is studied. Different
solution techniques are employed for the inviscid and viscous flows. These both rely on linearizing the
governing equations for each of these flows. In particular, the viscous flow is constrained to remainwithin
a small perturbation of the unperturbed flow as it evolves. This assumption is justified since standing
wave behaviour is expected in the inviscid case. Solutions are presented for a variety of different values
of the shear parameters and the way these parameter choices affect the interaction between vorticity
and density in the viscous case is investigated in detail. These linearized solutions are confirmed by
comparison with fully non-linear results obtained numerically.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The presence of shear in fluid flow is associated with a
variety of wavelike behaviours. Of particular interest is the effect
a finite amount of shear may have on stratified flows and on
fluid interfaces. Mechanisms for the generation of shear are often
found in viscous flow, for instance in boundary layers or in the
flow between moving plates, and similar effects are possible in
rotational inviscid flow. Since shear is essentially a measure of
spatial velocity gradient, it is often convenient to describe or
treat these types of flows in terms of vorticity. For example, the
linear velocity profile established between two moving plates
(plane Couette flow)may be described as having constant vorticity.
Such a description is particularly useful in dealing with wavelike
behaviour or periodic disturbances, an example of which is the
treatment of co-rotating vortices by Saffman [1].

Pullin and Grimshaw [2] calculated numerous large amplitude
steady waves, including some with limiting features such as
corners, on a two-layer inviscid flow with shear in the lower layer.
Similarly, in [3] numerous steady waves were computed on a free
shear layer and these featured a variety of resonant interactions
between wave modes. Standing waves are often studied in the
context of water waves; these are discussed in terms of their
associated vorticity in [4].

A number of shear flows are unstable to small perturbations.
Two examples of these are the Kelvin–Helmholtz and Holmboe
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instabilities. In the Kelvin–Helmholtz instability two fluid layers
flow past each so that there is a thin region of infinite shear at
their common boundary. This is a well known and thoroughly
studied problem, and solutions for both viscous and inviscid fluids
were computed in [5] where the predicted growth of the wave
and the formation of a cat’s-eye spiral were seen at the interface.
In the Holmboe instability, the shear is spread over a layer of
finite width and, as presented by Umurhan and Heifetz [6], this
flow configuration permits a variety of solution modes, including
travelling and standingwaves. The stability of a variety of different
shear flows are investigated in [7], although the focus there is on
perturbing some base vorticity or velocity profiles in a few very
specific ways. The flow presented in this paper will typically be
perturbed by giving the interface between the layers a sinusoidal
disturbance.

Two fluid layers of slightly different densities, bounded above
and below by rigid walls, are considered. The lower layer is
denser than the upper so that the flow is buoyantly stable. When
unperturbed, each layer flows with constant vertical shear. The
amount of shear in each layer may differ, but the associated
horizontal velocity is chosen so that it is continuous across the
interface between the fluids. There are two cases here that are of
interest: the case where both layers flow with equal amounts of
shear and the case where one layer has no shear.

Two versions of this flow will be considered: one that assumes
both fluid layers are inviscid and one that includes the effects
of viscosity. The inviscid version will be based on a classical
description of a two-layer incompressible fluid, with an infinitely
thin interface separating the two layers. By contrast, the viscous
version of the flow will feature a continuously stratified, weakly
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Fig. 1. Schematic of the two-layer shear flow. The heavy dashed line shows the
continuous horizontal velocity profileU01(y) used in the viscous formulation, while
the thin solid line is the horizontal velocity profile for the inviscid case.

compressible fluid, albeit one that mimics the layered fluid of the
inviscid case. The interface (or quasi-interface) in each of these two
flowswill be given a small sinusoidal perturbation (thus perturbing
both density and velocity) and the subsequent behaviour of the
wave in the interfacial region will be the focus of this work.

The two different formulations of the flow are introduced in
Section 2 and care has been taken to ensure that these match
each other as closely as possible. This enables direct comparison
so that the effects of viscosity may be assessed as in [8]. Both
formulations are then studied using linearization techniques; the
assumption here is that, once perturbed, the evolving flow does
not change too far from the base flow. In Section 3, this is achieved
by approximating the fully non-linear governing equations of
the inviscid problem with their linearized equivalents. Similarly,
the viscous formulation is carefully analysed using perturbation
series techniques and a spectral solution is specified in Section 4.
Here much attention is given to choosing appropriate initial
conditions so that the system is perturbed in a similar way to the
inviscid problem. The results of these two solution techniques are
compared in Section 5, where a variety of solutions for different
parameter values are presented. Notably these display a range
of oscillatory behaviours, including standing waves, both damped
and undamped. The validity of these solutions in the context of the
solution technique for the viscous flow will be discussed.

2. Model formulation

The flow to be considered consists of two horizontal fluid layers
of different densities. The upper fluid is denoted as layer 1 and
the lower fluid as layer 2; quantities associated with each layer
are subscripted accordingly. These layers are in motion with a
continuous horizontal velocity profile, such that the speed at the
interface of the two layers is c0 and each layer flows with constant
vertical shear, namelyω1 in the top layer andω2 in the lower layer;
hence the base horizontal speeds of each layer are u1 = c0 − ω1y
and u2 = c0 − ω2y, respectively. There is thus a sharp change in
both density and vorticity about y = 0, although the horizontal
speed is continuous here. Walls are present above and below the
interface, at y = h1 and y = −h2, respectively. A schematic
diagram of the flow configuration is shown in Fig. 1.

Non-dimensional variables will be introduced for convenience.
The length scale is chosen to be the depth of the lower layer
h2. It follows that an appropriate choice for the speed scale is√
gh2 and similarly the time scale to be used is

√
h2/g . The lower

layer density ρ2 is used to scale density. This gives a number of
key dimensionless parameters, namely a Froude number F0 =

c0/
√
gh2, twodimensionlessmeasures of shearγ1 = ω1

√
h2/g and

γ2 = ω2
√
h2/g , a density ratio D = ρ1/ρ2 and the dimensionless

height of the upper layer h = h1/h2. This set of five parameterswill
be used for both the inviscid and viscous formulations presented
below.

There will be a few key choices for these parameters. In
particular, interest lies in investigating the effect of changing the
strength of the shear parameters γ1 and γ2 in each layer. The
case of equal shear, that is where γ1 = γ2, will be studied
first. The stability of a similar flow with a continuously stratified
density profile (and only the lower wall) was examined by
Chandrasekhar [9, article 103a]. In viscous fluids, shear flows of this
type are often referred to as plane Couette flow (see, for instance,
Drazin and Reid [10, Chapters 4 and 5] for various approaches
to the viscous problem or Case [11] for an investigation of the
stability of the equivalent inviscid flow), namely the flow induced
between moving plates. The next step is to consider the related
case of γ1 = 0 and γ2 ≠ 0. A similar flow was studied by Pullin
and Grimshaw [2] where numerous large amplitude steady waves
(including over hanging waves) were computed and it is possible
that steady waves of a smaller amplitude may be obtained here. In
each of these cases the base flow will be given a small sinusoidal
perturbation in both density and vorticity. It is the response to this
disturbance and subsequent evolution of the flow, with particular
emphasis on the interfacial region, that will be the focus of the
study.

2.1. Inviscid formulation

The inviscid version of this problem involves two immiscible
fluid layers flowing as described above. Both layers are assumed to
be inviscid and incompressible. There is an interface between the
layers lying at y = 0 when the system is unperturbed, and more
generally the interface is represented by the function y = η(x, t).
This implies that the exact shape of the layers is not known a priori,
and by the very nature of the problem the layers’ shapes change as
the interface evolves.

The inclusion of shear means that the flow is inherently rota-
tional; however, as only constant shear is considered it is possible
to write the velocity as a sum of rotational and irrotational parts,
thus allowing velocity potentials Φ1 and Φ2 to be constructed for
the irrotational parts of the fluidmotions in each layer. In the upper
layer, between y = η(x, t) and y = h, the velocity components are

u1 = F0 − γ1y +
∂Φ1

∂x

v1 =
∂Φ1

∂y
and similarly in the lower layer, between y = −1 and y = η(x, t),
the horizontal and vertical components of velocity are written as

u2 = F0 − γ2y +
∂Φ2

∂x

v2 =
∂Φ2

∂y
.

The velocity potentials satisfy Laplace’s equation in their respec-
tive regions, that is

∇
2Φ1 = 0 η(x, t) < y < h

∇
2Φ2 = 0 − 1 < y < η(x, t)

as is usual for incompressible inviscid fluids. Additionally, there are
a number of boundary conditions to be defined on the interface. On
either side of the interface it is required that the normal component
of velocity is zero, leading to the condition that

∂η

∂t
= vi − ui

∂η

∂x
on y = η(x, t) (2.1)
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