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a b s t r a c t

Laminar radial stagnation flow impinging on a stretching or shrinking elastic cylinder of radius a is studied.
The strain rate of the stagnation flow is 2k and that of the stretching cylinder is b. The origin of stretching is
in general displaced by a distance c from the inviscid stagnation circle on the cylinder. An exact similarity
reduction of the Navier–Stokes equations leads to coupled ordinary differential equations describing the
primary flow f (η) and a secondary flow g(η)with similarity variable η = (r/a)2. The system is governed
by the Reynolds number R = ka2/2ν, the dimensionless offset parameter α = c/a, and the dimensionless
stretching parameter β = b/2k, where ν is the kinematic viscosity of the fluid. Solutions of the coupled
equations only depend on R and β , but the flow field depends crucially on α. Analytic solutions are found
for the special valuesR = 2+β and also for allβ ifR = 1. For other values ofR andβ , solutions are obtained
numerically. We find no solutions for β < βc , dual solutions when βc ≤ β < −1, and unique solutions
for β > −1, where βc depends on R. The stability of the dual primary flow solutions is determined and
the effect of flow misalignment is displayed in streamfunction plots.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the manufacture of metal and polymer solid cylinders, the
material is usually in a molten phase when thrust through an
extrusion die and then cools and solidifies some distance away
from the die. Experiments by Vleggaar [1] show that the velocity of
thematerial is approximately proportional to the distance, so these
systems are often modeled as linearly stretching rods or cylinders.
For metals and polymers, and especially when the material is
rubber or plastic, it is advantageous to blow a gaseous medium
onto the not-yet-cooled material to provide quality control in the
cooling process [2], in which case the stagnation circle of the
gaseous streammay coincidewith, or lie downstream of, the origin
of stretching (die exit). In the event that the blowing stream can
be modeled as normal radial stagnation flow on the extruding
cylinder, we have the situation of interest in this paper: aligned
or nonaligned radial stagnation flow on a stretching cylinder.

Stagnation-point flows are ubiquitous in the sense that they
appear in virtually all flow fields of engineering and scientific
interest. In many situations, it is possible to find an exact sym-
metric stagnation-point flow solution of the Navier–Stokes equa-
tions; see, for example, the review byWang [3]. Exact asymmetric
stagnation-point solutions, on the other hand, are rare.While sym-
metric exact solutions based on a unique strain rate were reported

∗ Corresponding author. Tel.: +1 303 492 4684; fax: +1 303 492 3498.
E-mail address:weidman@colorado.edu (P.D. Weidman).

by Heimenz [4] for planar (two-dimensional) and by Homann [5]
for axisymmetric (three-dimensional) stagnation-point flows,
Howarth [6] showed that an exact non-axisymmetric solution
based on two orthogonal strain rates is available. Wang [7] and
later Cox [8] applied Howarth’s reduction to the problem of flow
between an air bearing table and a floating disk to obtain another
exact nonaxisymmetric solution of the Navier–Stokes equations;
Cox [8] concluded that the aerodynamic lift on the disk could be
enhanced if the impinging flow were not axisymmetric. Recently,
Wang [9] devised a similarity reduction of the Navier–Stokes equa-
tions which accounts for the misalignment between an external
stagnation flow and a stretching sheet; both Hiemenz [4] and
Homann [5] stagnation-point flows impinging, respectively, on
planar and axisymmetrically stretching sheets were considered.

In a seminal paper,Wang [10] reported a similarity reduction of
the Navier–Stokes equations describing axisymmetric radial stag-
nation flow normal to a circular cylinder. Many extensions of this
work to Newtonian and non-Newtonian fluids have since been re-
ported. The symmetry of the radial stagnation flow is destroyed
if the cylinder is allowed to move axially, as shown by Gorla [11]
for the case of constant cylinder velocity. The influence of cylin-
der rotation and wall transpiration in radial stagnation flows was
reported by Cunning, et al. [12]. A formulation for oblique stag-
nation flow on a circular cylinder was reported by Okamoto [13]
and later rediscovered byWeidman and Putkaradze [14]. Flows in-
terior and exterior to a stretching cylinder were studied by Brady
and Acrivos [15] and Wang [16], respectively; these flows are re-
flexively symmetric about the stretching origin and axisymmetric
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Fig. 1. (a) Coordinates and sketch of the aligned streamline pattern that appears for c = 0 and (b) sketch of the nonaligned streamline pattern that appears for c ≠ 0.

about the cylinder axis. If one superposes radial stagnation flow
onto a cylinder stretching about the impingement point of invis-
cid stagnation flow, the streamlines will always be axisymmetric.
However, the reflexive symmetry that exists when the stagnation
circle coincides with the circle of stretching will be lost when the
two circles are axially displaced. In the present investigation, we
show how both symmetric and asymmetric exact Navier–Stokes
solutions can be attained for this problem. Calculations over the
parameter space of solutions is an order of magnitude more time
consuming than for the planar problem studied byWang [9] owing
to the additional parameter R governing the flow curvature. Our
goal is to fully understand the kinematical features of the asym-
metric flow, to determine the wall shear stress as a function of the
governing parameters, and to ascertain the stability of the primary
flow on which the secondary flow depends. At the same time, we
provide some exact solutions that exist for special values of the
governing parameters.

The presentation begins in Section 2 with the problem formu-
lation, and Section 3 outlines the kinematical features of the flow
with particular reference to the misaligned case. The analytical
solutions given in Section 4 are followed by a presentation of rel-
evant numerical results in Section 5. A self-similar stability analy-
sis to determine which of the dual solutions are stable is given in
Section 6 and the paper ends with a summary and conclusion in
Section 7, followed by an Appendix giving some exact results for
the planar problem.

2. Problem formulation

We consider isothermal, normal radial stagnation flow on a
linearly stretching/shrinking elastic cylinder. We further allow
the origin of stretching to be axially displaced from the inviscid
stagnation flow circle. Variables with an asterisk are dimensional
and thosewithout an asterisk are dimensionless. For axisymmetric
flow in the absence of swirl, we take (u∗, w∗) as velocities in the
(r∗, z∗) coordinate directions and denote the pressure by p∗. The
steady flow is governed by the equation of continuity

∇ · u∗
= 0 (2.1a)

and the viscous incompressible Navier–Stokes equation

(u∗
· ∇)u∗

= −
1
ρ

∇p∗
+ ν∇2u∗, (2.1b)

where ρ and ν are the fluid density and kinematic viscosity, re-
spectively, here assumed constant. As r∗

→ ∞, the viscous flow
approaches the potential stagnation flow

u∗
= −k


r∗

−
a2

r∗


, w∗

= 2kz∗ (2.2a)

p∗
= p∗

0 −
ρk2

2

[
r∗

−
a2

r∗

]
, (2.2b)

in which a is the cylinder radius and p∗

0 is the pressure on the stag-
nation circle at z∗

= 0. Furthermore, the cylinder stretches in its
own plane with strain rate b,

w∗(a, z∗) = b(z∗
+ c), (2.3)

with the stretching origin shifted a distance z∗
= −c from the

inviscid stagnation circle. A sketch of the coordinate system and
streamlines for aligned flow with c = 0 is given in Fig. 1(a); when
c ≠ 0, the flow will be nonaligned, with asymmetric streamlines,
as sketched in Fig. 1(b).

Introducing the dimensionless coordinates

r =
r∗

a
, z =

z∗

a
, η = r2, (2.4)

we find a reduction of the Navier–Stokes equations using the fol-
lowing coordinate separation of the velocity field:

u∗(η) = −k a
f (η)
η1/2

,

w∗(η, z) = 2ka[zf ′(η)+ αβg ′(η)], p∗
= ρk2a2P

, (2.5)

where α = c/a is the dimensionless offset parameter and β =

b/2k is the ratio of the strain rates. This ansatz satisfies the
continuity equation (2.1a), and insertion into the incompress-
ible Navier–Stokes equation (2.1b) yields, when far-field matching
with (2.2a) is taken into account, the coupled pair of ordinary dif-
ferential equations and an expression for the pressure

η f ′′′
+ f ′′

+ R(ff ′′
− f ′2

+ 1) = 0 (2.6a)

η g ′′′
+ g ′′

+ R(fg ′′
− f ′g ′) = 0 (2.6b)

P = P0 −

[
f 2

2η


+ 2k2z2 +

1
R
f ′(η)

]
, (2.6c)

where R = ka2/2ν is the Reynolds number introduced by
Wang [10]. The boundary conditions are that the cylinder surface
is impermeable and satisfies the no-slip boundary condition. The
solution should tend towards a displaced form of the inviscid so-
lution (2.2) as η → ∞. Thus Eqs. (2.6a) and (2.6b) must satisfy the
boundary conditions

f (1) = 0, f ′(1) = β, f ′(∞) = 1 (2.7a)

g(1) = 0, g ′(1) = 1, g ′(∞) = 0. (2.7b)

Notice in (2.6a) and (2.6b) the one-way coupling similar to [9],
whereby the function f (η) influences g(η), but not vice versa.

The boundary condition on g(1) is chosen to ensure that the
dimensionless streamfunction

ψ(η, z) =
ψ∗(r∗, z∗)

ka3
= zf (η)+ αβg(η) (2.8a)

is zero on the surface of the cylinder. The meridional velocities are
obtained using the relations
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