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A weakly nonlinear approach is utilized here to study the electrohydrodynamic (EHD) instability of an
incompressible viscous liquid jet stressed by an axial electric field. The linear motion equations is solved
in the light of nonlinear boundary conditions. The viscosity is assumed to be small. The study takes
into account both the shear and radial components of the stresses at the interface. In the linear theory,
we discuss the breakup phenomena of liquid jets. Also, it is found that, the electrical shearing stresses
have no effect at the linear marginal state, while the linear cutoff wavenumber depends on the electrical
shearing stresses. A nonlinear perturbation method is introduced. This method can be described our
problem precisely. The nonlinear stability is compared with the linear stability condition in the weak
viscosity case. It is found that, the weak viscosity has effect on the nonlinear stability condition, in
contrast with the linear analysis, whereas the nonlinear cutoff wavenumber doesn’t depend on the weak
viscosity in both the linear and nonlinear theory.
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1. Introduction

Electrohydrodynamic (EHD) is the study of fluid motions driven
by external electrostatic fields. The process of EHD is dependent on
so many parameters and physical properties of the fluid system.
There has been continued interest in the behavior of liquid jets
under the influence of an electric, because of the numerous indus-
trial applications, such as in paint spraying [1], electronic ink-jet
printers [2], etc. The study of capillary liquid jet instability us-
ing hydrostatic theory, first explained by Plateau [3]. He showed
that the axisymmetric deformation is stable or unstable according
as the wavelength of deformation of the cylindrical surface is less
than or greater than the circumference of the cylinder. Rayleigh
[4] extended Plateau’s work using hydrodynamic theory of linear
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stability. He developed the important concept of the mode of max-
imum instability by treating liquids as perfect conductors. Most
studies have tended to consider either perfect conductors [3,4] or
perfect dielectrics [5]. Taylor [6] proposed an EHD theory based
on the leaky dielectric model. This model accounts for the charge
accumulation at the interface due to finite conductivities in the flu-
ids, where the surface tangential electric stresses induce fluid mo-
tion. In the light of linear theory of leaky dielectric theory Melcher
and Taylor [7] explained certain paradoxical phenomena pertaining
to nonconducting fluids. Saville [8] examined the linear EHD stabil-
ity of an infinite fluid cylinder in the presence of an axial electric
field. Both fluids were treated as leaky dielectrics. He showed that
a leaky dielectric requires much lower field strength than a perfect
dielectric for jet stabilization to take place. In addition he showed
that the stability of the cylindrical configuration depends on the
relative magnitude of the conductivity and dielectric constant ra-
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tios. Experiment have been reported by Sankaran and Saville [9]
on leaky dielectric bridge. Their results showed that, the stability
with the application of an electric field depending on the conduc-
tivities and dielectric constants of the two media as predicted by
the leaky dielectric model [8]. Burcham and Saville [10] studied
the stability of a leaky dielectric bridge penned between planar
electrodes held at different potentials and surrounded by a non-
conducting, dielectric gas. The stability conditions of the perturbed
system are discussed both theoretically and numerically. Burcham
and Saville [11] compared the theoretical results with experimental
work, that demonstrated how an electric field stabilizes an other-
wise unstable configuration. Pelekasis et al. [12] studied the linear
oscillations of viscous, capillary bridge in the presence of an axial
electric field. They obtained, the stability conditions for both cases
of leaky and perfect dielectrics. López-Herrera et al. [13] studied
the linear electric viscous jets. They discussed the role of limited
conductivity and permittivity on the behavior of electrified jets for
viscosity limit, low and high electrical conductivity and permittiv-
ity. Elcoot [14] investigated the effect of a uniform surface charge
in the presence of a finite rate of charge relaxation of cylindri-
cal interface. He examined the effects of the surface charge and
charge relaxation on the stability of the flow by considering var-
ious limiting cases in axisymmetric and nonaxisymmetric modes.
He predicted a new unstable regions.

The nonlinear problem of the leaky dielectric model has at-
tracted the attention of many investigators. By treating nonlinear
processes rigorously, Feng and Scott [15] improved agreement be-
tween the theory and experiment for higher field strengths and
larger deformations. Feng [16] extended the computations of Feng
and Scott [15] to include the charge convection effect that is ex-
pected to emerge when the flow intensity is considerable. The-
oretical treatments of the nonlinear aspects of the effect of an
axial electric field on the streaming instability of surface waves,
which propagating through porous media of a cylindrical flow of
two concentric finitely conducting fluids, have been investigated
by Elcoot and Moatimid [17]. They showed that the nonlinear the-
ory predicted more accurately the instability, where new instability
regions, appeared due the nonlinear effects. The nonlinear electro-
viscous potential flow analysis has been studied by Elcoot [18]. He
showed that, the nonlinear stability condition depend on the vis-
cosity coefficients, which does not explain in the linear theory of
viscous potential flow analysis model of Funada and Joseph [19,20].
In their model, they considered the normal stress is not neglected,
but the effect of shear stress is neglected. Elcoot [21] introduced
new technique based on the perturbation theory. He derived a new
condition on the material properties, involving weak electric relax-
ation times in both fluids. Such effects can only be understood by
nonlinear analysis, as the linear analysis fails to predict them.

A generalization of the nonlinear instability for viscous flow is a
very difficult problem. The difficulty arises as the nonlinear terms
are considerable. Fing and Bear [22] restrict themselves to the case
of weak viscous effects. This weakness is regarded such that vis-
cous effects appear at the interface and gradually decrease to be
neglected in the bulk [23–25]. Their treatment based on the vis-
cous or viscoelastic contribution has been demonstrated through
the normal stress boundary condition. While, the tangential stress
is ignored. In this paper we employ the nonlinear analysis based
on the perturbation technique [21] to describe the stability of jet
in the small viscosity case, under the influence of an axial uniform
electric field. The study takes into account the shear and normal
stresses effects at the interface.

2. Governing equations

We are interested in examining the stability of an infinite in-
compressible cylindrical jet of radius R , under the influence of an

axial uniform electric field E0. In what follows, the subscripts 1
and 2 denotes variables associated with the fluids inside and out-
side the jet, respectively. Bulk properties of the liquid (density ρ ,
viscosity μ, dielectric constant ε1 and electric conductivity σ1) as
well as interfacial properties (surface tension T ) are uniform and
constant under the isothermal analysis. In the most practical appli-
cations the surrounding material is a gas and, thus it is assumed
that it has negligible density and viscosity, but uniform and finite
dielectric constant ε2 and electric conductivity σ2. The gravita-
tional acceleration is ignored. The motion ensues from rest and the
flow field generated due to wave motion. To describe the fluid mo-
tion, we use the moving frame of reference with the jet at rest. If
(r, Z , t0) is the coordinate system for the traveling jet and (r, z, t)
for the jet rest, the transformation connecting the two systems is
given by z = Z − u0t0, t = Z/u0 where u0 is the uniform speed
of jet along the axis of the cylinder, as [5,14]. For convenience,
the usual cylindrical coordinates (r, θ, z) is used. Only the axisym-
metric case is considered in this study. The interface between the
liquid and gas is assumed to be well defined and initially cylin-
drical. The Maxwell equations lead to an exponential decay of the
bulk charge density as exp(−σ1t/ε1) where the parameter σ1/ε1
is sufficiently short, so that the electric charge density in the bulk
is essentially zero. Therefore, the bulk forces of electrical origin are
negligible and the field coupling occurs at the interface as speci-
fied by the appropriate boundary conditions [7].

The idea for the weakly nonlinear description is the some slight
departure from the linear viewpoint [24,25]. At this end, the non-
linear problem will contain the linear description with some ad-
ditional terms representing a correction for the main solution. The
weakly nonlinear description given here depends on neglecting the
nonlinear terms from equations of motion and applying the appro-
priate boundary conditions without dropping the nonlinear terms.
At this stage, the dispersion relation should be extended to include
nonlinear terms.

The electric potential Φ governed by Laplace equations

∇2Φ1 = 0, (2.1)

∇2Φ2 = 0, (2.2)

where ∇2 is axisymmetric cylindrical Laplacian operator defined
as

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
. (2.3)

The Laplace equations (2.1) and (2.2) satisfied the requirement of
steady-static charge conservation in the bulk fluid, as expressed in
terms of zero divergence of electric current density due to Ohmic
conduction.

The conservation equations of mass and momentum for the liq-
uid jet are

∇ · v = 0, (2.4)

ρ

[
∂v

∂t
+ v · ∇v

]
= −∇Π + μ∇2v, (2.5)

where v is the fluid velocity vector and Π is the modified pressure
defined by

Π = p − 1

2
ε j E2

0, j = 1,2, (2.6)

and p is the hydrostatic pressure. The relaxation time is much
smaller than the liquid oscillation time. This prevents any free
charge from appearing in the bulk of the liquid, and thus no elec-
tric stresses arise in Eq. (2.5).

We consider a perturbation, so that the surface deflection
S(r, z, t) is expressed by

S(r, z, t) = r − R − η = 0, (2.7)
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