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a b s t r a c t

The unsteady boundary-layer flow on a shrinking surface in an electrically conducting fluid is considered
as it develops from rest. The nature of the solution is shown to depend on a dimensionless magnetic
parameter M . For M > 1 a steady state is reached at large times, when M = 1 there is also a boundary-
layer flow for all times but nowwith a thickness growing at a rate proportional to t (dimensionless time).
However, for M < 1 the solution breaks down at a finite time ts with the boundary-layer thickness and
maximum velocity becoming large as t approaches ts, though with the skin friction remaining finite.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

The viscous flow past a moving surface initiated by Sakiadis [1]
has since received a considerable amount of attention because
of its engineering applications. In particular, the case of the
boundary-layer flow over a stretching sheet has attracted much
research due, in part, to its mathematical simplicity and also
because closed form solutions are possible in many cases (see,
for example, [2–4]), starting with the work by Crane [5]. More
recently, the solution given by Crane has been generalized for an
arbitrary stretching sheet with a suitable transpiration velocity by
Weidman andMagyari [6]. The generalized stretching velocity also
includes an important class of backward boundary layer flows (see,
for example, [7,8]). As pointed out by Wang [9] solutions do not
exist for a shrinking sheet in an otherwise still fluid and, in order to
have a solution, Micklavcic andWang [10] added constant suction.
Wang [9] treated a stagnation-point flow and Fang and Zhang [11]
added a transverse magnetic field to contain the vorticity over a
shrinking sheet. The effects of mass transfer and heat transfer on
flow generated by a shrinking sheet have been considered by Fang
et al. [12] and Fang and Zhang [13].
The problem of an unsteady boundary-layer flow past stretch-

ing surfaces has receivedmuch less attention for two basic reasons,
namely these problems are much more difficult to analyse than
the corresponding steady state problems and secondly steady state
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problems are, perhaps, ofmore practical relevance. Pop andNa [14]
obtained a small time expansion for the problem of flow past an
impulsively stretching sheet. There have been very few studies, for
example Riley [15] and Harris et al. [16], which consider analyti-
cally both the initial unsteady development and the approach to
the final steady state. There have been some studies which have
considered only the initial flow field analytically. Nazar et al. [17]
studied the unsteady flow field caused by impulsively stretching
the surface and creating motion in the free stream. Most of the
studies, for example Kumaran et al. [18], do not consider both the
initial development and final approach analytically. The unsteadi-
ness in the problem considered by Kumaran et al. [18] is due to
sudden step change in constant transverse magnetic field where
the initial state is an already established steady flow.
The present problem is interesting and new in two ways. It is

a backward unsteady problem and the nature of how the flow de-
velops from its initial state depends on the (dimensionless) mag-
netic parameter M . For M > 1 a steady state is reached at large
times, whenM = 1 there is also a boundary-layer flow for all times
but now with a thickness growing at a rate proportional to t (di-
mensionless time). However, forM < 1 the solution breaks down
at a finite time ts with the boundary-layer thickness andmaximum
velocity becoming large as t approaches ts, though with the skin
friction remaining finite. This singularity as t → ts is also seen in
the M = 0 case, a situation that has some similarities with the
flow development near a rear stagnation point treated by Proud-
man and Johnson [19] and Robbins and Howarth [20], though in
this latter case a solution was seen to exist for all t > 0 with the
boundary-layer thickness increasing exponentially over time.
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We start by deriving our model and then consider the time
development of the solution in the three separate cases, M > 1,
M = 1 andM < 1.

2. Model

We consider an unsteady two-dimensional laminar incom-
pressible boundary-layer flow over an impulsively shrinking sheet
in an electrically conducting fluid under a constant transversemag-
netic field of strength B0. The x′-axis is taken along the shrinking
surface in a direction opposite to the motion of the surface and the
y′-axis is taken normal to this surface (in the direction of the mag-
netic field). u′ and v′ are respectively the velocity components in
the x′ and y′ directions. The boundary-layer equations governing
the flow are then (see [18] for example),

∂u′

∂x′
+
∂v′

∂y′
= 0 (1)

∂u′

∂t ′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= −

(
σB20
ρ

)
u′ + ν

∂2u′

∂y′2
(2)

where t ′ is time and ν, ρ and σ are respectively the kinematic
viscosity, density and the magnetic permeability of the fluid. We
assume that the surface is at rest for t ′ < 0 with the motion being
set up for t ′ > 0 by the surface being set intomotionwith a velocity
Uw = −C0x′ along its length, where C0 is a positive constant. This
leads to the boundary conditions

u′ = 0, v′ = 0 for x′ ≥ 0, y′ ≥ 0 (t ′ < 0) (3)
u′ = Uw, v′ = 0 on y′ = 0,

u′ → 0 as y′ →∞ (x′ ≥ 0, t ′ > 0). (4)

We make Eqs. (1)–(4) dimensionless by introducing the variables

(x, y) = (x′, y′)
(
C0
ν

)1/2
, t = C0t ′,

(u′, v′) = (C0ν)1/2(u, v).

(5)

We then introduce a dimensionless stream function ψ , with u =
ψy, v = −ψx, so as to satisfy the continuity equation. Then to
describe the flow near the stagnation point associated with the
surface velocity given in (3) we put, ignoring any leading edge
effects,

ψ(x, y, t) = −xf (y, t). (6)

This results in

∂3f
∂y3
− f

∂2f
∂y2
+

(
∂ f
∂y

)2
−M

∂ f
∂y
=

∂2f
∂y∂t

(7)

on 0 ≤ y <∞, t > 0 subject to the initial and boundary conditions
that

f = 0 at t = 0 (0 ≤ y <∞) (8)

f = 0,
∂ f
∂y
= 1 on y = 0,

∂ f
∂y
→ 0 as y→∞ (t > 0) (9)

whereM = σB20
C0ρ
is the magnetic number.

We are concernedwith the time development of the solution to
Eq. (7) startingwith condition (8). There are three cases to consider
depending on whetherM > 1,M = 1 orM < 1.

Fig. 1. Values of τw =
(
∂2 f
∂y2

)
y=0
obtained from the numerical solution of Eqs. (7)–

(9) forM = 1.5, 2.0, 4.0, showing the solution rapidly approaching the large-time
asymptotic limit (11).

3. Solution

In all cases the initial behaviour of the solution to Eqs. (7)–(9) is
purely diffusional, developing over a length scale of y ∼ t1/2 for t
small, giving

τw ∼ −
t−1/2
√
π
+ · · · , f∞ ∼

2
√
π
t1/2 + · · · for t small (10)

where τw =
(
∂2f
∂y2

)
y=0
is thewall stress and f∞ = limy→∞ f (y, t) is

the entrainment velocity. However, the way the solution develops
as t increases from these small times depends on the value of M
and we start by considering the caseM > 1.

3.1. Case M > 1

Eq. (7) subject to initial and boundary conditions (8), (9)
was solved numerically using a method used extensively be-
fore, see [21,22] for example. This method is based on the
Crank–Nicolson scheme with Newton–Raphson iteration being
used to solve the resulting nonlinear finite-difference equations
at each time step. An accuracy check was built into the numeri-
cal scheme allowing a variable time step1t to be used. This meant
that 1t could be increased up to some preset upper bound as the
solution approached a steady state forM > 1 anddecreased to suc-
cessively smaller values of 1t as the singularity was approached
forM < 1.
In this case our numerical integrations of (7)–(9) indicate that

the solution approaches a steady state as t →∞, with

f (y, t)→
1

√
M − 1

(
1− e−

√
M−1y

)
as t →∞. (11)

We illustrate this in Fig. 1 with plots of τw against t for
representative values of M . From (10) τw is large and negative for
t small, also being independent of M in this limit, as can be seen
from the plots in Fig. 1 for small times. As t increases the large-time
asymptotic limit (11) is rapidly approached, with this being more
quickly approached asM is increased. This behaviourwas also seen
for the other values ofM > 1 attempted.
We can acquire an insight into the nature of the problem in this

case by looking for a solution forM large. Expression (11) suggests
that we put

f = M−1/2 f̃ , ỹ = M1/2y, t̃ = Mt. (12)
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