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a b s t r a c t

Analytical formulae, predicted by recently developed vortex ring models, in the limit of small Reynolds
numbers (Re), are compared with numerical solutions of the underlying equation for vorticity and
experimental data. Particular attention is focused on the recently developed generalised vortex ringmodel
in which the time evolution of the thickness of the vortex ring core L is approximated as atb, where a and
b are constants (1/4 ≤ b ≤ 1/2). This model incorporates both the laminar model for b = 1/2 and
the fully turbulent model for b = 1/4. A new solution for the normalised vorticity distribution is found
in the form ω0 + Reω1, where ω0 is the value of normalised vorticity predicted by the classical Phillips
solution. This solution shows the correct trends in the redistribution of vorticity due to the Reynolds
number effect, and it predicts the increase in the volume of fluid carried inside the vortex ring. It is
emphasised that although the structures of vortex rings predicted by analytical formulae, based on the
linear approximation, andnumerical calculations for arbitraryRe are visibly different for realistic Reynolds
numbers, the values of integral characteristics, such as vortex ring translational velocity and energy,
predicted by both approaches, turn out to be remarkably close. The values of velocities in the region
of maximal vorticity, predicted by the generalised vortex ring model, are compared with the results of
experimental studies of vortex ring-like structures in gasoline engine-like conditionswith a high-pressure
(100 bar) injector. The data analysis is focused on the directmeasurements of droplet axial velocities in the
regions of maximal vorticity. Most of the values of these velocities lie between the theoretically predicted
values corresponding to the later stage of vortex ring development between b = 1/4 (fully developed
turbulence) and 1/2 (laminar case).

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Vortex rings have been extensively studied theoretically and
experimentally (e.g. [1,2]). Particular attention has been focused
on their translational velocities and energies. Two approaches
were used in theoretical studies. In the first approach, the relation
between velocity and vorticity was used to obtain the formulae for
thin-cored rings: ε = L/R0 � 1, where R0 is the initial vortex
ring radius and L is the core radius [3,4]. A more general approach
valid for arbitrary ε, developed in [5] (see also [6]), is based on the
Helmholtz–Lamb formula for the ring’s translational velocity U in
the form

U =
π

2M
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(
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)
ζdxdr, (1.1)
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where ζ and Ψ are the vorticity and stream function, respectively,
and M = I/ρ is the momentum of vorticity per unit density.
Using this formula, Saffman [7] (see also [8]) derived an explicit
expression for the translational velocity of a thin-cored viscous
vortex ring in the form

Us =
Γ0

4πR0

[
ln
(
4R0
√
νt

)
− 0.558+ O

(
νt
R02
ln
(
νt
R02

))]
, (1.2)

where Γ0 is the initial circulation of the ring, t is time and ν
is the kinematic viscosity. The vorticity distribution inside this
ring corresponds to the Lamb–Oseen vortex filament [6]. This
asymptotic formula is valid for the description of the initial stage
of viscous vortex ring developmentwhen νt � R02. The final stage
of viscous vortex ring decay (νt � R02) can be described based on
the Phillips self-similar solution for the vorticity (ζf ) and stream
function (Ψf ) distributions [9]:

ζf =
Mr

16π3/2 (νt)5/2
exp

(
−
s2
∗

2

)
, (1.3)
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where

s∗ =

√
r2 + x2

2νt
;

x, r are cylindrical coordinates for the axisymmetric vortex
ring. The derivation of the translational velocity in this case is
not straightforward. Since (1.1) was derived based on the full
Navier–Stokes equation, the substitution of (1.3) and (1.4) into
(1.1) leads to inconsistency. Attempts to account for the second-
order effects of the nonlinear convective terms of the vorticity
equation were made by Kambe and Oshima [10]. However, their
results are not uniformly valid. Rott and Cantwell [11,12] studied
this case, taking into account the flow dynamics in the potential
flow region surrounding the vortical region. They showed that the
asymptotic translational velocity of the ring can be predicted by
the following formula:

Uf =
7M

15 (8πνt)3/2
= 0.0037038

I/ρ

(νt)3/2
. (1.5)

Another approach to this problem was developed in [13–16].
These authors obtained a first-order solution of the Navier–Stokes
equation with the origin in the centre of the vortex centroid, valid
in the limit of small Reynolds numbers Re defined as

Re = ζ0L2/ν,

where ζ0 = Atλ is the vorticity scale; constant A is to be specified
from the conservation ofM in the next section; in the same section
possible choices of λwill be discussed.
The translational velocity of the viscous vortex ringwas derived

in the form [15]
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where θ = R0/L = ε−1, I1 is the first-order Bessel function and
2F2 is the generalised hypergeometric function [17]. Similarly, the
kinetic energy and circulation were derived in the form [16]
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. (1.8)

Note that, apart from the definition of Re given above, at least two
other definitions of this number have been used in the literature:

Reu = UpD/ν, (1.9)

based on the ejection velocity Up and orifice diameter D, and

ReΓ0 = Γ0/ν, (1.10)

where Γ0 is the initial circulation carried by the ring.
The closed-form representations (1.6)–(1.8) enable us to

analyse the asymptotic behaviour of these parameters. In the limit
of small θ , these equations reduce to
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In the limit of large θ , they are reduced to
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Γs =
M
πR20

, (1.16)

where γ ≈ 0.57721566 is the Euler constant and ϕ is the di-
gamma function, defined as

ϕ =
d logΓ (x)
dx

,

where Γ (x) is the Gamma function.
Stanaway et al. [18] performed direct numerical simulation of

the Navier–Stokes equation for an axisymmetric vortex ring at
small and moderate Reynolds numbers. Fukumoto and Kaplanski
showed that (1.6) compares fairly well with their result at a small
Reynolds number [19]. The large-Reynolds-number asymptotics
was discussed in [20,21].
An alternative approach for estimating the temporal evolu-

tion of the vortex ring translational velocity was suggested by
Saffman [7], using simple dimensional analysis. He derived the fol-
lowing equation:

U =
M
k

(
R02 + k′νt

)−3/2
, (1.17)

where k and k′ are adjustable constants.
To obtain these constants, Weigand and Gharib [22] compared

their experimental results for 830 < ReΓ0 < 1650 with those
predicted by Eq. (1.17). This comparison led them to the following
values: k = 14.4 and k′ = 7.8. Later, k = 10.15 and k′ = 8.909
were obtained theoretically by Fukumoto and Kaplanski [19]. In
contrast to the aforementioned laminar vortex ring models, the
theory of turbulent vortex rings is far less developed. To the best of
the authors’ knowledge, the first attempt to investigate turbulent
vortex ring flow structures was made by Lugovtsov [23,24] who
based his analysis on the introduction of the time-dependent,
turbulent (eddy) viscosity (see [25,26]):

ν∗ ∝ LdL/dt. (1.18)

Eq. (1.18) follows from a simple dimensional analysis [27], remem-
bering that L has the dimension of length, while dL/dt has the di-
mension of velocity.
Using Eq. (1.18), Lugovtsov [23,24] developed a turbulent

vortex ring model with turbulent viscosity ν∗.
Eqs. (1.6)–(1.8) were originally derived for L =

√
2νt (laminar

vortex ring). Later, in [28] it was shown that they remain valid in
a more general case when L = atb, where a and b are constants
(1/4 ≤ b ≤ 1/2). The model based on this presentation of L was
called the generalised vortex ring model. For a =

√
2ν, b = 1/2

and for large times (small θ ), the leading-order term of (1.6) is
identical with the one predicted by Eq. (1.5). For small times, νt �
R20, the vorticity is concentrated on a circle of radius R0 and tends
to a Gaussian form [15]. The leading term of (1.14) coincides with
Saffman’s formula, (1.2) [19].
For b = 1/4 in the generalised vortex ring model, the leading

term in (1.11) corresponds to
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