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The Chapman–Enskog solutions of the Boltzmann equation provide a basis for the computation of
important transport coefficients for both simple gases and gas mixtures. These coefficients include the
viscosity, the thermal conductivity, and the diffusion coefficient. In a preceding paper (I), for simple,
rigid-sphere gases (i.e. single-component, monatomic gases) we have shown that the use of higher-
order Sonine polynomial expansions enables one to obtain results of arbitrary precision that are free
of numerical error and, in a second paper (II), we have extended our initial simple gas work to modeling
the viscosity in a binary, rigid-sphere, gas mixture. In this latter paper we reported an extensive set
of order 60 results which are believed to constitute the best currently available benchmark viscosity
values for binary, rigid-sphere, gas mixtures. It is our purpose in this paper to similarly report the
results of our investigation of relatively high-order (order 70), standard, Sonine polynomial expansions
for the diffusion- and thermal conductivity-related Chapman–Enskog solutions for binary gas mixtures of
rigid-sphere molecules. We note that in this work, as in our previous work, we have retained the full
dependence of the solution on the molecular masses, the molecular sizes, the mole fractions, and the
intermolecular potential model via the omega integrals. For rigid-sphere gases, all of the relevant omega
integrals needed for these solutions are analytically evaluated and, thus, results to any desired precision
can be obtained. The values of the transport coefficients obtained using Sonine polynomial expansions
for the Chapman–Enskog solutions converge and, therefore, the exact diffusion and thermal conductivity
solutions to a given degree of convergence can be determined with certainty by expanding to sufficiently
high an order. We have used Mathematica� for its versatility in permitting both symbolic and high-
precision computations. Our results also establish confidence in the results reported recently by other
authors who used direct numerical techniques to solve the relevant Chapman–Enskog equations. While
in all of the direct numerical methods more-or-less full calculations need to be carried out with each
variation in molecular parameters, our work has utilized explicit, general expressions for the necessary
matrix elements that retain the complete parametric dependence of the problem and, thus, only a matrix
inversion at the final step is needed as a parameter is varied. This work also indicates how similar results
may be obtained for more realistic intermolecular potential models and how other gas-mixture problems
may also be addressed with some additional effort.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Chapman–Enskog solutions of the Boltzmann equation pro-
vide a basis for the computation of important transport coefficients
for both simple gases and gas mixtures [1–15]. The use of Sonine
polynomial expansions for the Chapman–Enskog solutions was first
suggested by Burnett [16] and has become the general method for
obtaining the transport coefficients due to the relatively rapid con-
vergence of this series [1–8,16]. While it has been found that rel-
atively, low-order expansions (of order 4) can provide reasonable

* Corresponding author.
E-mail address: LoyalkaS@missouri.edu (S.K. Loyalka).

accuracy in computations of the transport coefficients (to about
1 part in 1000), the adequacy of the low-order expansions for
computation of the slip and jump coefficients associated with gas-
surface interfaces still needs to be explored. Also of importance
is the fact that such low-order expansions do not provide good
convergence (in velocity space) for the actual Chapman–Enskog so-
lutions even though the transport coefficients derived from these
solutions appear to be reasonable. Thus, it is of some interest to
explore Sonine polynomial expansions to higher orders. In a pre-
ceding paper [17], we have shown for simple, rigid-sphere gases
(i.e. single-component, monatomic gases) that, indeed, the use of
higher-order Sonine polynomial expansions enables one to obtain
results of arbitrary precision that are free of numerical error. In
a second paper, we have extended our initial simple gas work to
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modeling the viscosity in a binary, rigid-sphere, gas mixture [18].
In this latter paper we reported an extensive set of order 60 re-
sults which are believed to constitute the best currently available
benchmark viscosity values for binary, rigid-sphere, gas mixtures.
It is our purpose in this paper to similarly report the results of
our investigation of relatively high-order, standard, Sonine polyno-
mial expansions for the diffusion- and thermal conductivity-related
Chapman–Enskog solutions for binary gas mixtures of rigid-sphere
molecules. In the following sections we describe the basic theory,
the theoretical elements specific to diffusion, thermal diffusion,
and thermal conductivity, the solution technique in terms of the
Sonine polynomials, the bracket integrals, details related to the
specific case of rigid-sphere molecules, and our results.

A part of our motivation with respect to this work has been
some of the recently reported results on direct numerical solu-
tions of the linearized Boltzmann equations for rigid-sphere, gas
mixtures. In particular, results for the transport coefficients and
the Chapman–Enskog solutions have been reported by Takata et
al. [19]. Our work provides a benchmark for assessing the preci-
sion of some of the numerical results reported by these authors
and, indeed, we report some such comparisons that we have made.
Our work does have an important distinguishing feature in that,
for rigid-sphere gas mixtures, we require no numerical integra-
tions and thus, in principle, results of arbitrary precision can be
obtained for any given order of the Sonine polynomial expan-
sions. We note that the computational resources available to us
at the present time have permitted expansions to order 70 given
the manner in which we have implemented this technique, but
even here it has been possible to obtain extrapolated results be-
lieved to be precise to 14 or more significant digits for each of
the normalized gas mixture transport coefficients (depending upon
the specific mass ratios, size ratios, and mole fractions considered)
and it is certain that further improvements in the implementa-
tion of the technique or the availability of better computational
resources will allow even higher-order expansions and greater con-
vergence of the results. Further, we note that in this work we have
retained the full dependence of the solutions on the molecular
masses, the molecular sizes, the mole fractions, and the inter-
molecular potential model via the omega integrals, and we have
obtained explicit (symbolic) expressions for the necessary matrix
elements (derived from the bracket integrals) used in evaluat-
ing the coefficients in the Sonine polynomial expansions for the
coupled Chapman–Enskog equations. These generalized matrix el-
ements, once determined, need not be determined again. For rigid
spheres (or for any other potential model of interest that can be
represented via the omega integrals), we can then determine in a
straightforward manner a set of matrix elements that are specific
to the potential model being used and store them. These specific
matrix elements require only the input of the appropriately com-
puted omega integrals which, for rigid spheres, are known exactly
such that no numerical integrations are needed. In this fashion, our
method requires only a matrix inversion at the final step. This is
important, as all that is needed for finding both the transport co-
efficients and the related Chapman–Enskog solutions for arbitrary,
binary, rigid-sphere gas mixtures is precomputed in a general form.
Thus, we are able to study parametric dependencies and conver-
gence of our results in an economical and systematic way since,
once the matrix elements up to the highest order are computed
and stored, we can process results to any order up to this high-
est order without any new computations of matrix elements being
required. Further, since our values for the transport coefficients
converge with increasing order, since we can use arbitrarily high
numerical precision as needed in Mathematica� for the final ma-
trix inversion step, and since we can easily compare results for a
given order with the results for immediately preceding orders, we

can be confident in our results and the degree of convergence ob-
tained.

2. The basic theory

Following the work and notations of Chapman and Cowling [1],
we offer below an abbreviated version of the relevant theory. For
an arbitrary, rarefied, gas mixture, one begins with the Boltzmann
equations describing the molecular distribution functions of the
constituent gases:(

∂

∂t
+ ci · ∇r + Fi · ∇ci

)
f i(r, ci, t)

=
∑

j

∫ ∫ ∫
( f ′

i f ′
j − f i f j)gb db dε dc j =

∑
j

J ( f i f j), (1)

in which the left-hand side (LHS) is known as the streaming term
of the equation which contains the differential streaming operator
in the brackets, the right-hand side (RHS) is a sum over what are
known as the collision integrals in which J ( f i f j) is called the col-
lision operator, f i(r, ci, t) is the molecular distribution function of
the i-th constituent, g is the magnitude of the pre-collision rela-
tive velocity, g = c j −ci , b is the ‘impact parameter’ associated with
the binary scattering events, ε is an angle corresponding to the az-
imuthal orientation of the scattering plane, and c is the molecular
velocity. A prime (′) indicates a function of a post-collision velocity
while the corresponding lack of a prime indicates a pre-collision
velocity dependence, e.g. f i = f i(r, ci, t) while f ′

i = f i(r, c′
i, t). In

the summation over the different constituents, scattering between
like constituents (i.e. when i = j) is treated in the same way as
scattering between unlike constituents with the various pre- and
post-collision velocities retained as separate variables for purposes
of integration. In this circumstance, for clarity, it is common prac-
tice to drop the i subscript inside the collision integral in order to
facilitate the necessary discrimination between the velocities (i.e.
ci → c and f i → f ). Of course it follows from this that, if one is
dealing with a simple gas having only one constituent, one obtains
from this process the single Boltzmann equation describing the gas
in which j = 1 and no subscript is necessary on the LHS:(

∂

∂t
+ c · ∇r + F · ∇c

)
f (r, c, t)

=
∫ ∫ ∫

( f ′ f ′
1 − f f1)gb db dε dc1. (2)

Equivalent expressions for the above equations are often encoun-
tered in which b db dε is expressed as αi j(g,χ)de′ or σi j(g,χ)d�
where χ is the scattering angle (the angle between g and g′) and
αi j(g,χ) = σi j(g,χ) is known as the differential collision cross-
section which describes the probability per unit time per unit vol-
ume that two molecules colliding with velocities, ci in dci and c j
in dc j , will have a relative velocity after collision, g′ = c′

j − c′
i , that

lies within the solid angle, de′ = d� = sin(χ)dχdε.
For the specific case of a binary gas mixture, one expresses the

distribution functions f1 and f2 in the form:

f1 = f (0)
1 + f (1)

1 + f (2)
1 + · · · , (3)

f2 = f (0)
2 + f (1)

2 + f (2)
2 + · · · , (4)

where the lowest-order approximations are chosen to be:

f (0)
1 = n1

(
m1

2πkT

)3/2

exp

(
− m1

2kT
(c1 − c0)

2
)

, (5)

f (0)
2 = n2

(
m2

2πkT

)3/2

exp

(
− m2

2kT
(c2 − c0)

2
)

, (6)
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