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The present paper concerns with the dispersion process in steady and oscillatory flows through an
annular pipe in presence of reversible and irreversible reactions at the wall. Method of homogenization,
a multiple-scale method of averaging, is adopted for deriving the effective transport equations. The main
objective is to look into the effect of aspect ratio of the annular pipe on the dispersion coefficient
due to the combined effect of axial convection and radial diffusion in steady and oscillatory flows
along the annulus, subject to the kinetic reversible phase exchange and irreversible absorption at the
outer wall. Results demonstrate that upto a certain critical value of aspect ratio, dispersion coefficient
increases with increase of aspect ratio when the wall is retentive, though the wall inertness may lead
to decrease of dispersion coefficient with increase of aspect ratio. The results would be useful to the
medical practitioners working in the domain of catheterized artery.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

The study of longitudinal dispersion of tracers through an annu-
lar straight tube is of considerable interest due to its applications
in the field of chemical, environmental and biomedical engineer-
ing. The first fundamental study on dispersion was that of Tay-
lor [1] who showed that the dominant mechanism, whereby a
scalar contaminant cloud (or solute) is spread in the steady lam-
inar flow within straight tube, is dispersion – the interaction be-
tween non-uniform velocity and diffusion across the flow. Aris [2]
extended Taylor’s theory to include longitudinal diffusion and de-
veloped an approach ‘method of moments’ to analyze the asymp-
totic behaviour of second order moment about the mean.

An exact solution of the diffusion equation was obtained by
Chatwin [3] to study the dispersion in oscillatory flow. Watson [4]
used the concept proposed by Chatwin to study the passive con-
taminant dispersion in an oscillatory pressure-driven flow. Jimenez
and Sullivan [5] used a probabilistic model to study the stream
wise dispersion in unsteady laminar flow. Pedley and Kamm [6]
studied the axial mass transport in an annular region in presence
of an oscillatory flow field.

There exist a large number of studies on Taylor dispersion un-
der the sole influence of irreversible reaction. Some of them con-
sidered channel flow (Mondal and Mazumder [7]) or tube flow
(Jiang and Grotberg [8]) while in few cases annular tube flows
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(Sarkar and Jayaraman [9], Mazumder and Mondal [10]) were also
considered. Dispersion coefficient affected by a reversible phase
exchange has been studied by Davidson and Schroter [11]; Phillips
and Kaye [12]. But very few studies includes the effect of both re-
versible and irreversible reactions. Though Purnama [13], Revelli
and Ridolfi [14,15] and Ng [16,17] carried out this effect for flow
through a tube or open-channel, but to the best of our knowl-
edge no attempt has been made to examine dispersion phenom-
ena through an annular tube considering both reversible and irre-
versible wall reactions.

Effect of aspect ratio on dispersion was studied by Mondal and
Mazumder [18], Mazumder and Mondal [10], Sarkar and Jayara-
man [9,19] and others. These studies reveal that aspect ratio of
annular pipe has important contribution in dispersion process. But
in all these cases, only the effect of irreversible reaction at the
boundary is considered, though the model demands to have ap-
plication in catheterized artery where the reversible reaction also
plays important role.

The main objective of the present paper is to examine the in-
fluence of annularity on the transport process under the combined
effects of reversible and irreversible wall reactions, when the flow
is driven by a pressure gradient comprising of steady and peri-
odic components. The inner wall of the outer tube is lined with
a very thin layer made up of a retentive and reactive materi-
als. The substance that undergoes Taylor dispersion in the fluid
is subject to reversible phase exchange and irreversible absorption.
These boundary reactions are the most important processes con-
trolling the dispersion of solute in catheterized artery. A relatively
fast rate of phase exchange and a relatively slow rate of absorption
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were considered. Results are shown how the spreading of tracers
is influenced by the aspect ratio, phase exchange parameter and
absorption.

The insertion of catheter into an artery leads to a formation of
an annular region between the catheter and the arterial wall (Mc-
Donald [20]). The fact that the lung and blood vessels have con-
ductive walls (where phase exchange between the arterial wall and
the flowing fluid (blood) and reaction with a reactant secreted by
the wall tissue may take place) and the catheter, of course, acts as
an impermeable boundary is reflected in our boundary conditions.
The model will help us in understanding the indicator technique
and other mechanisms in the branchial region. The insertion of a
pipe with smaller diameter at the centerline of an artery brings
the asymmetry to the flow, and the increase of aspect ratio leads
to the existence of symmetry of the annular flow.

2. Velocity distribution

We consider a fully developed, axi-symmetric laminar flow of
a homogeneous, incompressible viscous fluid through an annular
pipe having inner radius b and outer radius a (i.e., a > b). We have
used a cylindrical coordinate system in which the radial and axial
co-ordinates are r and x respectively. The flow is assumed to be
unidirectional and so the velocity has only axial component u(r, t)
which satisfies the Navier–Stokes equation as:
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where ∂ p/∂x is the axial pressure gradient, ρ is the fluid density
and ν is the kinematic viscosity.

The horizontal pressure gradient, which drives the flow, consists
of steady and harmonically fluctuating components,
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where P > 0 is the steady part of the pressure gradient, ψ is a
factor such that Pψ is the amplitude of the oscillatory part of the
pressure gradient.

The no-slip conditions on the surface of the inner and outer
walls of the annular pipe i.e. u(b, t) = 0 and u(a, t) = 0, will pro-
duce the following velocity profile,

u(r, t) = us(r) + Re
[
uw(r)eiωt] (1)

where the steady component (us(r)) is given by,
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where 〈us〉 is the velocity averaged over the annular section given
by
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and K = 2
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and the unsteady component (uw(r)) of the velocity is
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Here I0 and K0 are respectively the modified Bessel function of
first kind and second kind of order zero with imaginary arguments.
The function I0 and K0 can be expressed as I0(ri1/2) = ber(r) +
i bei(r) and K0(ri1/2) = ker(r) + i kei(r) where ber, bei, ker and kei
are Kelvins functions of order zero.

For flow through a tube (i.e., when b = 0), the steady and un-
steady components of the velocity are given by
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3. Governing equation and boundary conditions

Let us consider the transport of a chemical species through the
annular gap of a tube. If the species is completely miscible with
the fluid and C(x, r, t) is the concentration (mass of species dis-
solved per bulk volume of the fluid) of the mobile phase, then C
satisfies the mass transport equation as:

∂C

∂t
+ u(r, t)

∂C

∂x
= D

∂2C

∂x2
+ D

r

∂

∂r

(
r
∂C

∂r

)
, b < r < a (4)

along with the boundary conditions,
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∂r
= 0, r = b, (5)
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where D is the molecular diffusion coefficient assumed to be con-
stant and Cs(x, t) is the concentration (mass of species retained
per unit surface area of the wall) of the immobile phase. Here Γ ,
k and α are the irreversible absorption rate, the reversible reaction
rate and the partition coefficient respectively.

The boundary condition (5) states that there is no net transport
of mass through the inner wall of the annular pipe. Last equality
of the boundary condition (6) states that the rate of accumulation
of the immobile phase in the outer wall is linearly proportional
to the departure from local equilibrium between concentrations of
the two phases on the outer wall of the annulus, and the first
equality simply describes the irreversible reaction occurring at the
surface of the outer wall.

4. Assumptions

The following assumptions are made for carrying out the per-
turbation analysis,

1. The length scale for the longitudinal spreading of the chemical
cloud is much greater than the annular gap. It is meant that
x = O(L) and r = O(a − b), where L is a characteristic longitu-
dinal distance for the chemical transport. The ratio

ε = (a − b)/L � 1 (7)

is small enough to use as ordering parameter.
2. The oscillation period of the flow is so short that within this

period there are no appreciable transport effects along the
tube, though the effect of radial diffusion is not negligible. But
the annular gap of the tube is so fine that diffusion across the
entire annular section may be accomplished within this short
time scale.

3. The two reactions are of different orders. The reversible phase
exchange is much faster than the irreversible reaction. This
ensures that local equilibrium can be largely achieved over a
finite number of oscillations.
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