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The flow past a screen composed of periodic slats in a plane is studied. The method of eigenfunction
expansions and point match is used to solve the Darcy–Brinkman equations. The velocities, pressures and
resistances are determined for the flow in three orthogonal directions. Aside from screen geometry, the
flow is governed by a porous media parameter k which is zero for pure viscous flow. The fundamental
case for the flow over a single slat is then extrapolated. It is found that for k = 0 the Stokes paradox
occurs and the drag rises singularly as k is increased from zero.
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1. Introduction

The flow past a screen is important in biological membrane
and industrial filtering processes. Due to the small velocity in the
crevices, the inertial effects can be ignored and creeping flow as-
sumptions are valid. Analytical solutions are difficult for viscous
flow even in the Stokes limit. For thin screens with negligible
thickness, Roscoe [1] used an electrostatic potential method to
solve for the Stokes flow through an elliptic hole. Roscoe’s trans-
form was applied to the slow viscous flow through periodic two-
dimensional slits by Hasimoto [2], who was able to express the
solution in closed form. Wang [3] used the Roscoe transform semi-
analytically for the solution to viscous flow through an array of
holes.

In this paper we are concerned with the flow past a thin screen
embedded in a porous medium. We shall see later that there are
some fundamental differences between Darcy–Brinkman flow and
Stokes flow.

The flow in a porous medium is traditionally approximated by
the Darcy equation, where the mean velocity is proportional to the
pressure gradient, resulting in potential flow. Brinkman added a
viscous term so that the no slip condition on solid surfaces can be
applied. The Darcy–Brinkman equation is [4–6]

∇p′ = μe∇2 �υ − μ

K
�υ (1)

where p′ is the pressure, μe is the effective viscosity of the ma-
trix, �υ is the velocity vector, μ is the viscosity of the fluid, and K
is the permeability. This equation is well accepted for porous me-
dia of high porosity such as fiberglass wool. The Darcy–Brinkman
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equation reduces to Darcy equation when K → 0 and to the Stokes
equation when K → ∞. In both limits the problem can be simpli-
fied by a velocity potential.

However, for the general Darcy–Brinkman equation, all potential
methods fail. We shall use semi-analytic eigenfunction expansions
and point match to solve the problem.

Since Eq. (1) is linear, any uniform flow towards a screen can
be separated into three independent flows: the flow normal to a
screen (Fig. 1(a)), the flow parallel to a screen but still normal
to the slats (Fig. 1(b)) and the parallel flow parallel to the slats
(Fig. 1(c)). In each case the flow is two dimensional, i.e. depends
on x, y directions only. Note that if the Darcy equation is used in
the last two cases, the screen would have no effect on the flow.

2. The flow normal to the screen

The top of Fig. 1(a) shows the two-dimensional thin screen.
The width of the slats is 2L and the period is 2bL. Cartesian axes
are placed at the middle of a slat as shown. We normalize all
lengths by L, velocities by the velocity at infinity U , the pres-
sure by μeU/L. For the flow normal to the screen, the normalized
cross section is shown at the bottom of Fig. 1(a). Define a stream
function ψ normalized by U L which satisfies continuity, where the
Cartesian velocity components are (ψy,−ψx). Eq. (1) then becomes

px = ∇2ψy − k2ψy, (2)

p y = −∇2ψx + k2ψx (3)

where

k2 = μL2

μe K
(4)
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Fig. 1. The top figures show the three orthogonal flow directions across the screen. The bottom figures are the cross sections of each case. (a) The flow is normal to the
screen. The mean flow is in the x direction. Some streamlines are shown in the cross section. (b) The flow is parallel to the screen, but normal to the slats. The mean flow
is in the −y direction. Streamlines are shown. (c) Parallel flow is parallel to the slats. The flow is in the z direction. Constant velocity lines are shown. (d) Coordinates in the
vicinity of an edge.

is an important non-dimensional parameter characterizing the
porous medium. Eliminating pressure from Eqs. (2), (3) yields

∇2(∇2 − k2)ψ = 0. (5)

Due to symmetry, we need to consider only the strip x � 0, 0 �
y � b which is our computational domain. The symmetry bound-
ary conditions are

ψ = 0, ψyy = 0 on y = 0, (6)

ψ = b, ψyy = 0 on y = b, (7)

ψx = 0, ψxxx = 0 on x = 0, 1 < y � b. (8a,b)

The no-slip boundary condition is

ψx = 0, ψ = 0 on x = 0, 0 � y < 1. (9a,b)

At infinity the flow is uniform, such that ψy = 1. The solution to
Eqs. (5)–(7), (8a), (9a) is

ψ = y +
∞∑

n=1

An sin(αn y)

(
e−αnx − αn√

α2
n + k2

e−
√

α2
n +k2x

)
(10)

where αn = nπ/b and An are coefficients to be determined. The
remaining boundary conditions are satisfied by point match. Trun-
cate the series to N terms and consider N equally-spaced points
y j = b( j − .5)/N , j = 1, . . . , N . Then Eq. (8b) becomes

N∑
n=1

An sin(αn y j)αn = 0, 1 < y j � b. (11)

Eq. (9b) yields

N∑
n=1

An sin(αn y j)

(
1 − αn√

α2
n + k2

)
= −y j, 0 � y j < 1. (12)

From Eqs. (11), (12) the coefficients An are inverted. Convergence
is fairly fast. In general N = 100 is adequate for a three figure ac-
curacy in ψ . From Eqs. (2), (3) pressure is integrated to be

p = −k2x + k2
N∑
1

An cos(αn y)e−αnx + c. (13)

The integration constant c is determined by setting the average
pressure at x = 0, 1 < y � b to zero. Thus

c = k2

b − 1

N∑
1

An
sinαn

αn
. (14)

Typical streamlines are shown in Fig. 2(a) and the corresponding
pressure distribution is shown in Fig. 2(b). Note the convergence
of the pressure lines at the edge of the slat. Such singularity
in pressure is analyzed in Section 5. The value �p = |2c| also
represents the additional pressure loss due to the screen. Fig. 3
shows for given spacing b, �p rises with the porous parameter k.
When k → 0, the pressure drop approaches that predicted by Hasi-
moto [2]

�p = 2π/b

| ln[cos((b − 1)π/2b)]| . (15)

Our computed numerical values from Eq. (14) agrees with those of
Eq. (15) as k → 0.

Of interest is the force on a single slat, which can be isolated by
increasing the distance b. Both consideration of momentum differ-
ence and integration of pressure difference on a single slat shows
the (drag) force is D = 2b�p. Since it is not possible to use b = ∞
in our computation, the single slat or plate problem is approached
as follows. Assuming for large b

D ∼ a0 + a1/b2 + · · · . (16)

For given k we compute D for large b using an N which guarantees
at least 10 collocation points on the slat (up to N = 2000). Then
D is plotted against 1/b2 for various b. A typical result is shown
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