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a b s t r a c t

Inverse determination of temperature and heat flux at an inaccessible surface of a solid has been widely
employed in recent years. In this paper, a meshless inverse method, i.e. the method of fundamental solu-
tion (MFS), has been developed to determine the temperature field and hence the local boundary temper-
ature and heat flux distributions for a 2D steady-state heat conduction problem based on temperature
measurements at interior sample points in the wall of the boundary. A case study showed that MFS pre-
dicts the boundary temperature and heat flux with about the same accuracy as the Beck’s function spec-
ified method but consumes significantly less computing time. Error analysis was carried out regarding
uncertainty in location and accuracy of temperature measurement to demonstrate the reliability of the
proposed method.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The inverse heat conduction problem (IHCP) is used to deter-
mine temperature and heat flux at boundaries utilizing tempera-
tures measured at interior points. Various methods of solving the
IHCP have been reviewed in [1]. The mesh-based methods include,
for example, finite difference method (FDM) [2,3], finite element
method (FEM) [4,5], finite volume method (FVM) [6,7] and bound-
ary element method (BEM) [8,9]. FDM, FEM and FVM are used to
discretize the whole domain, whilst BEM to boundary only. Re-
cently, the meshless methods have been developed as alternatives
to classical discretization methods including the Kansa’s method
based on radial basis functions [10], method of fundamental solu-
tion (MFS) [11], local Petrov-Galerkin method [12], boundary knot
method (BKM) [13] and Monte Carlo method [14]. These meshless
methods require neither domain nor boundary discretization,
therefore the computational efficiency can be improved signifi-
cantly. Optimum procedures have been introduced using the least
squares method [15], least squares method with regularization
terms [16], conjugate gradient methods [17], steepest descent
method [18] and adaptive iterative filter method [19].

The meshless inverse method used in the present work is MFS,
which was firstly proposed by Kupradze and Aleksidze in 1960s

[20]. Compared with other meshless inverse methods, the imple-
mentation of MFS is relatively simple due to the fact that the solu-
tion is approximated by linear combination of fundamental
solutions corresponding to fictitious heat source points outside
the domain considered. This feature makes MFS suitable for solving
IHCP even with complicated geometries and guarantees accurate
results at small computational cost and consequently has been
developed rapidly within the last decade. Hon and Wei [21] suc-
cessfully developed MFS to solve transient IHCP with implementa-
tion of Tikhonov regularization technique and the L-curve method
to obtain a stable numerical approximation to the solution. They
later extended their work to multidimensional IHCP and the effec-
tiveness of this method was verified by several numerical exam-
ples [22]. Their work was also extended by Dong et al. [23] for
2D IHCP in an anisotropic medium and the implementation of
the truncated singular value decomposition and the L-curve crite-
rion to solve the resulting matrix equation. Jin et al. [24,25] pro-
posed a scheme for solving IHCP based on MFS, in conjunction
with a regularization method. The efficiency, accuracy, conver-
gence and stability of the scheme were demonstrated by numerical
results. They pointed out potential extensions of the method, such
as ill-posed Cauthy problems, inhomogeneous problems, inverse
source problems associated with other elliptic partial differential
equations. Other recent works have further extended the applica-
tions of MFS [26–31].

The present work stems from the need for a method to accu-
rately measure local temperature field and heat flux along the flow
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and channel surface during condensation in microchannels (Wang
and Rose [32]). It is very difficult to obtain the local surface tem-
perature and heat flux at such an inaccessible boundary surface.
Su et al. [33] shows that available experimental heat transfer data
for condensation in microchannels were largely scattered. Vapor-
side, heat-transfer coefficients had generally been inferred from
overall measurements by subtraction of thermal resistances and/
or using ‘‘Wilson plot’’ techniques and therefore have high uncer-
tainty. Rose [34] discussed in detail on heat-transfer coefficients,
Wilson plots and accuracy of thermal measurements. However, it
is relatively easy to measure the temperatures at interior points
in the wall of the boundary and then to determine local surface
temperatures and heat fluxes using the inverse method. In order
to maintain the generalization in the present study, MFS is pro-
posed to solve a general IHCP using measured interior wall sample
temperatures as input. It should be noted that the present method
can be applied to a range of heat transfer problems and that the in-
verse method is not limited to any specific IHCP.

2. Method of fundamental solution (MFS)

A 2D steady-state heat conduction case was analyzed to illus-
trate MFS as shown schematically in Fig. 1. The actual problem
with domain X is transformed into an indirect problem in an infi-
nite body and the outer boundary C conditions including temper-
ature and heat flux are modeled by assuming fictitious point heat
sources collocated on the fictitious boundary C0. This general prob-
lem in a finite domain can be transformed into one in an infinite
plane in order to obtain the solution in an indirect way. The points,
where either temperature or heat flux is known, are defined as

field points in the domain. The total number of the heat sources
is nsp and they are arranged out of the domain in the actual prob-
lem. Each of heat sources contributes to the temperature and heat
flux at all field points in the domain and at the boundary surfaces.
The distance d between the heat source and the point in the do-
main is also shown in Fig. 1. For a 2D steady-state heat conduction
problem, the governing equation with a heat source is given by:

r2u� ¼ �D x0; xð Þ ð1Þ

where u⁄ represents temperature, x0 is the location of the heat
source point and x is the field or collocation point. D x0; xð Þ is the Dir-
ac delta function, which is a mathematical description of the point
source excitation and satisfies

R
D(x0, x)dV = 1. The solution for Eq.

(1) is [35]:

u� ¼ 1
2p

lnð1=rÞ ð2Þ

where r is the modular of the distance vector~r between field point x
and heat source x0. Heat flux is obtained by:

q� ¼ @u�

@~n
ð3Þ

where~n is the outwards unit normal vector to the boundary. Substi-
tuting Eq. (2) into Eq. (3) gives:

q� ¼ �1
2pr2 ðrxnx þ rynyÞ ð4Þ

where rx and ry are the components of ~r in the x and y directions,
respectively; nx and ny are the components of normal in the x and
y directions, respectively.

By the principle of superposition for linear problems, the tem-
perature at field or collocation point can be represented by:

T ¼
Xnsp

i¼1

biu
�
i ð5Þ

where bi are unknown coefficients of the heat sources (density of
the heat source). For field point j, temperature can be written as

Xnsp

i¼1

biu
�ðxi; xjÞ ¼ Tj; ðj ¼ 1; . . . ;nT

fpÞ ð6Þ

where Tj is the temperature measured, nT
fp is the number of points

with temperature measured, and

Xnsp

i¼1

biq
�ðxi; xjÞ ¼ Qj; ðj ¼ 1; . . . ;nQ

fpÞ ð7Þ

where Qj is the heat flux and nQ
fp is the number of points with heat

flux measured. Eqs. (6) and (7) constitute an ill-conditioned linear
system of algebraic equations and the unknown coefficients can

Nomenclature

~n outwards unit normal vector to the boundary
nx, ny the components of ~n in the x, y direction respectively
nsp number of heat source

nQ
fp number of field point with known heat flux

nT
fp number of field point with known temperature

Q superpositioned heat flux
q⁄ heat flux excited by heat source x0

r modular of the distance vector~r
~r distance vector between field point x and heat source x0

rx, ry components of~r in the x, y direction respectively

T superpositioned temperature
Tb fluid temperature flowing over the bottom surface
Tt fluid temperature flowing over the top surface
u⁄ field point temperature excited by heat source x0

x field point
x0 heat source

Greek symbols
b superposition coefficient of the heat source
ab heat-transfer coefficient at the bottom surface
at heat-transfer coefficient at the top surface

Fig. 1. The method of fundamental solution and fictitious boundary.
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