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a b s t r a c t

A near-field, unsteady buoyant plume exhibits puffing behaviour, characterised by the periodic formation
of large-scale vortical structures (puffs). It has been observed in numerical simulations of pure thermal
plumes with a finite area source that the periodic formation of puffs is associated with an instability
of the lapping flow that develops over the heated region away from the plume centreline, producing
bulge-like structures. Experiments using a shadowgraph technique and two-dimensional, two-
component particle image velocimetry are conducted to validate our numerical results for the near-field,
unsteady behaviours of a pure thermal planar plume, with water as the working fluid. The formations of
bulges in the lapping flow and associated puffs are also observed in transient flow fields obtained in the
experiments. Further, quantitative comparison of mean velocity field and oscillation frequencies obtained
in the experiments and numerical simulation shows reasonable agreement. This experimental study
confirms the important effect of the lapping flow instability on the near-field unsteady behaviour, which
has been highlighted in numerical simulations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The near-field, transitional behaviour of a buoyant plume is
characterised by the periodic formation of large-scale vortical
structures (puffs). While most related studies considered forced
plume configurations [1–7], in this investigation we consider
pure thermal plumes, which have received relatively little atten-
tion [8].

In the near-field of a finite area source of buoyancy, it is known
that a horizontal inward moving boundary layer flow, the lapping
flow, as shown in Fig. 1, forms away from the plume centreline,
which turns upward in the central region and feeds the buoyant
fluid into the vertical ascending column [9]. Plourde et al. [8],
reporting on the numerical study of a pure thermal axisymmetric
plume with air as the working fluid, observed a periodic puffing
that is associated with an instability of the lapping flow, forming
a thermal plumelet (bulge), which eventually merges with and sur-
rounds the central ascending column. In our recent study [10], this
near-field behaviour was numerically studied for a pure thermal
planar plume with a Prandtl number, Pr, of 7:0. To investigate

the lapping flow instability, we modelled the lapping flow adjacent
to the plume source by a channel flow with a heated floor section,
providing an additional control parameter, the channel inlet veloc-
ity, that varies the lapping flow velocity. A Froude number, Fr, was
defined as a measure of the lapping flow velocity. Bulge structures
were also observed to form in this flow above a critical Reynolds
number, Re, and below a critical Fr. With increasing Fr, the bulge
was found to form further downstream, hence it was assumed that
an increase in Fr reduces the spatial growth rate of the Rayleigh–
Taylor instability. Further, the oscillation frequencies in the plume
stem were found to be closely correlated to those in the lapping
flow, which suggests the existence of a convective-type instability
of the near-field flow. A similar bulge forming instability over the
heated region of the floor, with associated puffing, was also ob-
served in a study of the transitional ventilated filling box flow re-
ported in [11].

All of the results discussed above were obtained by numerical
simulation only. The aim of this study is to provide the validation
for the puffing behaviour associated with the bulge formation in
the lapping flow by experiment using a shadowgraph technique
and two-dimensional, two-component particle image velocimetry
(2D2C-PIV). In Section 2, the numerical method is discussed. In
Section 3, the experimental methods used for both shadowgraphy
and 2D2C-PIV are discussed. The numerical and experimental re-
sults are presented and compared in Section 4, followed by conclu-
sions in Section 5.
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2. Numerical method

The computational domain is shown in Fig. 1. The governing
equations are the non-dimensional, incompressible Navier–Stokes
equations with the Boussinesq approximation for buoyancy:
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where i ¼ 1; 2; 3 and j ¼ 1; 2; 3. x1 ¼ x; x2 ¼ y and x3 ¼ z are the
coordinates as shown in Fig. 1, and t is time. u1 ¼ u; u2 ¼ v and
u3 ¼ w are the velocity components in the x; y and z directions,
respectively. p is the pressure perturbation and T the temperature
perturbation given as T ¼ T� � T�1

� �
= T�s � T�1
� �

, where T� is the
dimensional local temperature, T�1 the dimensional ambient tem-
perature and T�s the dimensional source temperature. The super-
script, �, is used for dimensional quantities.

Control parameters are the Reynolds and Prandtl numbers. The
Reynolds number is defined as Re ¼ U�L�=m�, where U� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�b�ðT�s � T�1ÞL
�p
, with L� the plume source width, m� the kinematic

viscosity, g� the gravitational acceleration, and b� is the thermal
expansion coefficient. The Prandtl number is Pr ¼ m�=j�, with j�
the thermal diffusivity.

For the study, a non-staggered, Cartesian mesh, finite volume
code was used [12]. The code is based on a fractional step method
[13], with the Adams–Bashforth and Crank–Nicolson time discret-
isation schemes being used for the advection and diffusion terms,
respectively. The spatial discretisations for the diffusion terms in
Eqs. (1) and (2) and the advection terms in Eq. (1) used second-
order central differencing, while for the advection terms in
Eq. (2) fourth-order central differencing with the ULTRA (Universal
Limiter for Tight Resolution and Accuracy) flux limiter [14] was
used. The Strongly Implicit Procedure (SIP) [15] was used for
Eqs. (1) and (2), and the Bi-Conjugate Gradient Stabilised method
(BICGSTAB) [16] using a SIP preconditioner was used for the Poisson
pressure correction equation. The solver is computationally
efficient, with each of Eqs. (1) and (2) and the Poisson pressure
correction equation, being solved only once per time step. Conver-
gence criteria were applied to ensure that the divergence was kept

Nomenclature

g� Gravitational acceleration (m/s2)
Pr Prandtl number (non-dimensional, Pr ¼ m�=j�)
Re Reynolds number (non-dimensional, Re ¼ U�L�=m�)
St frequency (non-dimensional, St ¼ f �L�=U�)
f � frequency (Hz)
ui velocity (non-dimensional, ui ¼ u�i =U�)
t time (non-dimensional, t ¼ t�U�=L�)
xi coordinates (non-dimensional, xi ¼ x�i =L�)
p pressure perturbation (non-dimensional, p ¼ p�=q�U�2)
T temperature perturbation (non-dimensional,

T ¼ T� � T�1
� �
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)
T� local temperature (K)
T�1 ambient temperature (K)
T�s source temperature (K)
U� characteristic velocity scale (m/s,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�b� T�s � T�1
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q
)

L� characteristic length scale (m)
Dt time step (non-dimensional)
Dt�l time difference between laser pulses (s)
Dxi grid spacing in the xi direction (non-dimensional)
Nxi number of grids in the xi direction

DI� change in light intensity due to refractive index change
I� light intensity
n refractive index
l� distance from a plane in the test section to the screen

(m)
u�1 settling velocity (m/s)
d�p particle diameter (m)
cI the number of pixels over one side of the interrogation

window
d�r the size of one pixel (m)
M magnification
U�max the maximum flow velocity (m/s)
dij Kronecker delta
j� thermal diffusivity (m2/s)
m� kinematic viscosity (m2/s)
b� thermal expansion coefficient (1/K)
q�p particle density (kg/m3)
q�f fluid density (kg/m3)
l�f fluid dynamic viscosity (kg/ms)
� dimensional quantity
i; j indices for tensor notation
hi time averaging operator

Fig. 1. Computational domain. (The z direction is out of the page. The domain size in the z direction is 0:5L� .)
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