ELSEVIER

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

C-H/C-F functionalization by E-selective ruthenium (II) catalysis

Uttam Dhawa ^a, Daniel Zell ^a, Rongxin Yin ^a, Shintaro Okumura ^{a,b}, Masahiro Murakami ^b, Lutz Ackermann ^{a,c,*}

- ^a Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- ^b Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- ^c Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100 Pavia, Italy

ARTICLE INFO

Article history: Received 19 February 2018 Revised 11 April 2018 Accepted 13 April 2018

Keywords: C-H activation Ruthenium C-F functionalization Mechanism

1. Introduction

Methods for the site-selective introduction of fluorinecontaining moieties into organic molecules continue to be in high demand, because these structural motifs improve the solubility, bioavailability, and metabolic stability of biorelevant compounds [1,2]. As a consequence, approximately 30% of all agrochemicals and 20% of all pharmaceuticals contain fluorine [3-7]. Recently, a significant impetus has been gained through the development of powerful tools that merge C-F cleavage [8,9] with C-H activation [10-24] strategies [25-28], as elegantly developed by Loh [29-31], Li [32-34], Wang [33], and Ackermann [35,36], among others [37]. In this context, we have reported on a (Z)-selective manganese-catalyzed transformation [36]. Within our program on sustainable ruthenium (II)-catalyzed [38-43] C-H activation [44,45], we hence became attracted to exploring complementary (E)-selective ruthenium-catalyzed [46] C-H/C-F functionalization. To this end, we have now unraveled the unique chemoselectivity of ruthenium (II) catalysis to enable a facile switch from a common C-H hydroarylation [47,48] manifold [49] toward challenging C-H/C-F functionalization-based C-H allylations (Fig. 1)

E-mail address: Lutz.Ackermann@chemie.uni-goettingen.de (L. Ackermann).

[50–71], on which we wish to report. Salient features of our findings include (i) unprecedented ruthenium-catalyzed C–H/C–F functionalization, (ii) highly E-diastereoselective C–H/C–F functionalization, (iii) a removable [12,72] directing group approach, and (iv) mechanistic insights into ruthenium-catalyzed C–H/C–F functionalizations.

2. Results and discussion

2.1. Optimization

We initiated our studies by probing various reaction conditions for the envisioned C–H/C–F functionalization with ketimine **1a** (Table 1). Thus, a switch in chemoselectivity from the typical hydroarylation regime (entries 1 and 2) toward allylative C–H/C–F activation proved viable by the use of a phosphine ligand and K_2CO_3 as the base (entries 1–3). Robust ruthenium (II) catalysis was operative in a range of aprotic solvents, including toluene, *meta*-xylene, 1,4-dioxane, and cyclohexane (entries 1–8). The base K_3PO_4 led to slightly improved yields of the desired ketone **3aa** upon one-pot hydrolysis (entries 8 and 9). Among a variety of ligands, the triaryl phosphine $P(4-C_6H_4F)_3$ was identified as being optimal (entries 9–17), particularly when trimethoxyphenylketimine **1b** was used as the substrate (entry 17 vs. 18). The E/Z-diastereoselectivities were slightly influenced by the choice of the ligand, generally favoring the E-diastereomer.

^{*} Corresponding author at: Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.

 $\textbf{Fig. 1.} \ \ Switch \ from \ hydroarylation \ to \ C-H/C-F \ functionalization \ by \ ruthenium \ (II) \ catalysis.$

2.2. Reaction scope

With the optimized ruthenium (II)-catalyzed C-H/C-F functionalization in hand, we explored its versatility with differently substituted ketimines 1 (Scheme 1). The robust ruthenium (II) catalysis manifold proved to be tolerant of various valuable functional groups, such as chloro and ester substituents, which should prove invaluable for future late-stage diversification. The site selectivity of the C-H/C-F functionalizations in intramolecular competition experiments with meta-substituted arenes 1e/1h was largely dominated by steric repulsion, unless a secondary directing group effect was exerted, as by dioxolone for ketone 3fa. Generally, ruthenium (II) catalysis was characterized by high

$$R^{1} + R^{2} + F^{2} + F^{2$$

Scheme 1. C-H/C-F functionalization with ketimines 1 [73].

diastereo control, favoring the (E)-diastereomer with selectivities ranging from 2.3/1 to 5.3/1, while only very minor amounts of the corresponding hydroarylation products of less than 2% were observed [73].

The versatile ruthenium (II)-catalyzed C-H/C-F functionalization was not limited to alkene **2a** as the substrate. The perfluoroalkylalkenes **2** were likewise smoothly converted into the corresponding products **3**, exploiting the removable nature of the ketimine **1** within a user-friendly one-pot procedure (Scheme 2). Again, the C-H/C-F functionalization was characterized by high levels of chemo-, diastereo-, and position selectivities.

 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Optimization of ruthenium (II)-catalyzed C-H/C-F functionalization.} \\ \end{tabular}$

Entry	Ligand	Base	Solvent	E/Z	3aa' [%]	3aa [%]
1	NaOAc	K ₂ CO ₃	1,4-dioxane	=	85	-
2	-	KOH	1,4-dioxane	-	70	
3	PPh ₃	K_2CO_3	HFIP	-	_	-
4	PPh ₃	K_2CO_3	PhMe	2.7	_	40
5	PPh ₃	K_2CO_3	m-xylene	2.0	_	42
6	PPh ₃	K_2CO_3	1,4-dioxane	2.0	_	45
7	=	K_2CO_3	СуН	_	_	_
8	PPh ₃	K_2CO_3	СуН	2.5	_	42
9	PPh ₃	K_3PO_4	СуН	2.8	_	53
10	PCy ₃	K_3PO_4	СуН	2.0	_	8
11	dppf	K_3PO_4	СуН	_	_	_
12	$P(Cy)Ph_2$	K_3PO_4	СуН	2.7	_	35
13	$P(4-C_6H_4Cl)_3$	K_3PO_4	СуН	2.0	_	25
14	$P(4-C_6H_4Me)_3$	K_3PO_4	СуН	2.3	_	27
15	$P(4-C_6H_4OMe)_3$	K ₃ PO ₄	СуН	3.0	_	28
16	$P(4-C_6H_4F)_3$	K ₃ PO ₄	СуН	2.7	_	55
17 ^b	$P(4-C_6H_4F)_3$	K ₃ PO ₄	СуН	3.0	_	65
18 [€]	$P(4-C_6H_4F)_3$	K ₃ PO ₄	CyH	3.5	_	73

a Reaction conditions: 1a (0.50 mmol), 2a (0.60 mmol), [RuCl₂(p-cymene)]₂ (5.0 mol %), ligand (20 mol %), base (2.0 equiv), solvent (1.0 mL), 120 °C, 24 h, isolated yields.

^b **2a** (1.5 mmol).

^c TMP-ketimine **1b** (1.5 mmol) instead of PMP-ketimine **1a**. PhMe = toluene, HFIP = 1,1,1,3,3,3-hexafluoroisopropanol, CyH = cyclohexane, PMP = 4-methoxyphenyl, TMP = 3,4,5-trimethoxyphenyl.

Download English Version:

https://daneshyari.com/en/article/6526555

Download Persian Version:

https://daneshyari.com/article/6526555

<u>Daneshyari.com</u>