ELSEVIER

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Priority Communication

One-step palladium catalysed synthetic route to unsaturated pelargonic C₉-amides directly from 1,3-butadiene

Dennis Vogelsang b, Johanna Vondran b, Andreas J. Vorholt a,*

- ^a Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
- b Department of Bio- and Chemical Engineering, Laboratory of Industrial Chemistry, Technical University of Dortmund, Emil-Figge-Straße 66, 44227 Dortmund, Germany

ARTICLE INFO

Article history: Received 7 March 2018 Revised 24 May 2018 Accepted 4 June 2018

Keywords: Carbonylation Palladium Telomerisation Homogeneous catalysis

ABSTRACT

The first example of the palladium catalysed *amidotelomerisation* is presented, in style of the ambitious carboxytelomerisation. A straightforward synthetic tool was generated to produce several industrial relevant pelargonic C₉-amides based on the fundamental chemical feedstocks: 1,3-butadiene, carbon monoxide and secondary amines. The reaction network was uncovered and crucial influences were determined by *design of experiments (DoE)*. Through the incorporation of an *auto*-tandem palladium acetate/ diphenylphosphino ethane catalytic system, very good yields up to 77% of the desired amides and excellent selectivities of carbonylation products of 94% were achieved. The application of the amidotelomerisation conditions to different classes of amines offered a broad range of the corresponding pelargonic C₉-amides. Understanding the tandem catalysis, significant inhibition factors were uncovered and through a stepwise optimisation, for the first time a carbonylation reaction of octadienyl amines (telomer products) was shown, yielding in 99% of the desired linear pelargonic C₉-amide.

© 2018 Published by Elsevier Inc.

1. Introduction

In the last years, the development of environmentally friendly synthesis tools for the preparation of organic amides moved into the focus of academia and industry. Particularly, complex organic multi-step amide synthesis concepts with high E-factors are going to be replaced by straightforward transition metal catalysed carbonylation reactions [1–5].

In this context, the homogeneous palladium catalysis offers the utilisation of a broad range of different substrates to amides [6]. For instance, 1,3-dienes [7], allylic alcohols [8] or amines [9–12] and olefins [13] can be converted to amides by applying transition metal carbonylation catalysts.

Generally, the class of amides is representative for high-value compounds with a strong relevance for industrial applications in agriculture and medicine [2]. To mention important examples, the pelargonic C₉-amides and its derivatives are compounds with a versatile application, *e.g.* as herbicides, rabbit repellents and capsaicin analogues [14].

One 100% atom economic palladium catalysed carbonylation reaction, which gives access to the synthesis of the pelargonic esters and its derivatives, is the carboxytelomerisation [15,16].

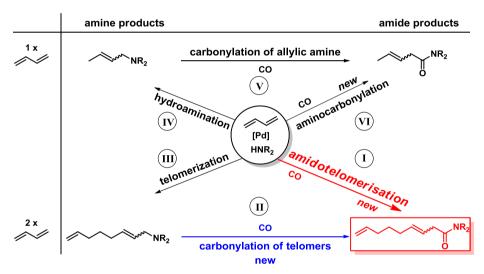
Very recently, we have shown that the carboxytelomerisation is an elegant synthesis method to convert 1,3-butadiene, carbon monoxide and methanol to the unsaturated C₉-pelargonic acid ester (Scheme 1). By applying palladium acetate and tri-*n*-butyl phosphine as ligand in pyridine, excellent reaction performances were achieved, quantitatively yielding the desired ester in 99% selectivity [17].

2. Results and Discussion

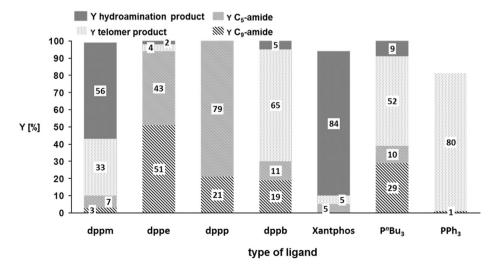
In the present work, for the first time we establish the palladium catalysed *amidotelomerisation* of 1,3-butadiene, carbon monoxide and amines. The target products, the pelargonic C_9 -amides are synthesised directly from fundamental chemical feedstocks. To the best of our knowledge, this is the first example of a linkage of an amine telomerisation with a carbonylation reaction to provide the direct formation of the desired C_9 -amides in a one-pot synthesis. Unfortunately, the simple transfer of the carboxytelomerisation reaction conditions is not expedient. The investigation of different ligands led to a broadened product spectrum in comparison to the conversion of alcohols to C_9 -esters with low yields of the desired pelargonic C_9 -amides. In Scheme 2, all competing palladium catalysed amination and carbonylation reactions are illustrated in the resulting reaction network.

^{*} Corresponding author.

E-mail address: Andreas-j.vorholt@cec.mpg.de (A.J. Vorholt).


Scheme 1. Depiction of the carboxytelomerisation and the new *amidotelomerisation* presented in the present work.

The reaction network was uncovered based on the palladium acetate catalyst in combination with diphenylphosphino propane (dppp) as an example of a bidentate ligand, which is known for high reaction rates in carbonylation reactions of allylic compounds [18]. In general, a reaction network comprising hydroamination, telomerisation and carbonylation reactions of the resulting allyl


amines was observed. More precisely, the proposed *amidotelomerisation* \mathbf{II} as well as the amine telomerisation \mathbf{III} or rather the carbonylation of the telomers \mathbf{II} can occur yielding all in the desired C_9 -amide by conversion of two mole 1,3-butadiene. On the other hand, by utilisation of one mole 1,3-butadiene, the hydroamination \mathbf{IV} , carbonylation of the hydroamination product \mathbf{V} and the combination, the direct aminocarbonylation \mathbf{VI} can be observed all providing the formation of the C_5 -amide. To the best of our knowledge, the aminocarbonylation of 1,3-butadiene to the C_5 -amide \mathbf{VI} , the carbonylation of the telomer \mathbf{II} and the proposed *amidotelomerisation* \mathbf{I} is not reported in literature to date.

Based on the successful application of dppp as ligand, a soft-ware supported *design of experiments (DoE)* was created to determine and validate crucial reaction parameters. The following significant trends were defined for selected ranges of crucial factors (for detailed information see the Supporting material):

- Low phosphine to palladium ratio leads to higher yields of the desired C_o-amide
- The higher the 1,3-butadiene to amine ratio, the higher the yields of the desired C₉-amide

Scheme 2. Competing reaction network under amidotelomerisation reaction conditions.

Fig. 1. Influence of the ligand in the palladium catalysed amidotelomerisation. Reaction conditions: 1.85 mmol diethyl amine, 9.24 mmol 1,3-butadiene (5 eq.), 5 mol% Pd (OAc)₂, Pd:ligand = 1:2, 2 mL toluene, p = 20 bar CO, T = 110 °C, t = 18 h; X = conversion, Y = yield; dppm = diphenylphosphino methane, dppp = diphenylphosphino propane, dppp = diphenylphosphino butane, Xantphos = 4,5-bis(diphenylphosphino)-9,9-methyl xanthene, PⁿBu₃ = tri-*n*-butyl phosphine, PPh₃ = triphenyl phosphine; all results determined via GC-FID-analysis.

Download English Version:

https://daneshyari.com/en/article/6526565

Download Persian Version:

https://daneshyari.com/article/6526565

Daneshyari.com