[Journal of Catalysis 361 \(2018\) 267–277](https://doi.org/10.1016/j.jcat.2018.03.008)

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Catalytic ammonia combustion properties and operando characterization of copper oxides supported on aluminum silicates and silicon oxides

TOURNAL OF CATALYSIS

Satoshi Hinokuma ^{a,b,}*, Saaya Kiritoshi ^a, Yusuke Kawabata ^a, Kento Araki ^a, Shun Matsuki ^a, Tetsuya Sato ^c, Masato Machida^a

a Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan ^b International Research Organization for Advanced Science and Technology, Kumamoto University, Japan

^c Technical Division, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

article info

Article history: Received 9 December 2017 Revised 17 February 2018 Accepted 6 March 2018

Keywords: Copper oxides Aluminum silicates Silicon oxides Ammonia Catalytic combustion

ABSTRACT

Although NH₃ has recently been regarded as a renewable and carbon-free energy source, NH₃ fuel has a high ignition temperature and its use results in the production of N_2O/NO_x . To overcome these issues, in this work, we focused on a novel catalytic combustion system and copper oxides (CuO_x) catalysts supported on aluminum silicates $(A|_6O_{13}Si_2, 3A|_2O_3.2SiO_2, 3A2S)$ and silicon oxides (SiO_2). The preparation methods for 3A2S as a support material were optimized to achieve high catalytic NH₃ combustion activity and high N_2 (low N_2O/NO) selectivity. Because the CuO_x supported on 3A2S prepared by an alkoxide method and subsequent calcination at 1200 °C for 5 h in air exhibited high catalytic performance for NH₃ combustion, the properties of the catalyst in addition to CuO_x/SiO₂ thermally aged at 900 °C for 100 h in air were also evaluated using high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray mapping, operando X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and gas adsorption techniques. Our findings suggest that the catalytic NH3 combustion activity, NO selectivity, and N_2O selectivity are closely associated with the reducibility (dispersion) of CuO_x, local structures around Cu, fraction of the oxidation state (Cu²⁺), and adsorption species of NH₃ (NH, imide). Finally, we propose a reaction mechanism for catalytic NH₃ combustion over not only $CuO_x/3A2S$ but also $CuO_x/SiO₂$.

2018 Elsevier Inc. All rights reserved.

1. Introduction

The demands to realize a low-carbon (low-CO₂-emission) society and address global warming are common issues for developed countries. Recently, $NH₃$ has been regarded as a renewable and carbon-free energy source because of its high energy density (3160 Wh L^{-1}) and negligible thermal NO_x emission [\[1,2\]](#page--1-0). For example, an NH3-fueled micro gas turbine showed potential as an NH3-fired power plant at Fukushima Renewable Energy Institute in Japan $[2]$. However, compared with fossil fuels, NH₃ has the following problems: (1) a high ignition temperature, (2) a low combustion rate, and (3) N_2O/NO_x production. To overcome these issues, the development of a novel $NH₃$ combustion system is required. One possible route is catalytic combustion, which is regarded as a promising technique for decreasing emissions from hydrocarbon-based fuels and was actively studied for use in gas turbines, boilers, and jet engines in the 1980s $[3,4]$. This system has many advantages over conventional noncatalytic combustion, as NO_x emission is greatly diminished by the low operating temperatures and high efficiency can be achieved through stable combustion. More recently, RenCat (a start-up company in Denmark) has been commercializing technology to decompose $NH₃$ into $H₂$ for use in fuel cells ([Fig. 1\)](#page-1-0) [\[5\].](#page--1-0) As described below, $NH₃$ decomposition (cracking) reaction (1) is endothermic, whereas NH₃ combustion reaction (2) is exothermic. Therefore, the system shown in [Fig. 1](#page-1-0) is expected that $NH₃$ decomposition can be effectively promoted by the heat produced from $NH₃$ combustion.

NH₃ decomposition:
$$
4NH_{3(g)} \rightarrow 2N_{2(g)} + 6H_{2(g)}
$$

\n $\Delta H^{\circ} = 46kJ \cdot (mol - NH_3)^{-1}$ (1)

NH₃ combustion:
$$
4NH_{3(g)}+3O_{2(g)} \rightarrow 2N_{2(g)}+6H_2O_{(g)}
$$

\n $\Delta H^{\circ} = -317kJ \cdot (mol - NH_3)^{-1}$ (2)

[⇑] Corresponding author at: Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

E-mail address: hinokuma@kumamoto-u.ac.jp (S. Hinokuma).

Fig. 1. Commercialized technology for NH₃ decomposition (cracking) into H₂ for use in fuel cells. NH₃ decomposition promoted by the heat produced from NH₃ combustion [\[5\]](#page--1-0). This is shown with permission from RenCat.

Therefore, to establish the further potentiality of $NH₃$ fuel, it is desirable to develop a novel catalyst with high thermal stability that enables the use of low ignition temperatures while resulting in negligible N_2O/NO_x emission. In regard to thermal stability, whatever the combustion catalysts are used as already-described potential applications, it is considered that accelerated tests as well as thermal aging at approximately 900 \degree C are required for the catalysts.

To achieve high performance for catalytic $NH₃$ oxidation or combustion to N_2 , copper oxides (CuO_x)-based catalysts have been widely studied and were reviewed by Jablonska and Palkovits [\[6\].](#page--1-0) Chmielarz and Jablonska also reviewed effective catalysts for the selective oxidation of $NH₃$ (NH₃-SCO) emission in the automotive and energy production sectors [\[7\].](#page--1-0) More recently, other novel CuO_x -based catalysts have been reported for selective catalytic NH₃ oxidation to N₂ [8-12]. Zhang et al. prepared several CuO– $Fe₂O₃$ composites to study their catalytic activity and product selectivity for $NH₃-SCO$ and suggested the synergistic effect between Fe₂O₃ and CuO [\[8\].](#page--1-0) Additionally, the mechanism of the $NH₃$ -SCO reaction over CuO–Fe₂O₃ catalysts was investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), revealing that intermediate species of adsorbed $NH₃$ are a key factor in determining product selectivity. Schiavoni et al. studied the catalytic properties for NH3-SCO and selective catalytic reduction of NO by $NH₃$ (NH₃-SCR) over a copper phase deposited on a silico aluminophosphate of chabazite; they concluded that isolated Cu²⁺ centers and small Cu₂O_y (clustered Cu²⁺ species with $y \ge 1$) clusters exhibited high activities for both reactions [\[9\]](#page--1-0). Rutkowska et al. also prepared Cu-ZSM-5 zeolite to study its catalytic properties for $NH₃$ -SCO and $NH₃$ -SCR; these researchers surmised that modification of the micro–mesoporous structure enabled tuning of their properties [\[10\].](#page--1-0) However, these published studies regarded NH₃ as air pollution, and therefore their NH₃ oxidation tests were evaluated at low NH₃ concentrations and moderate reaction temperatures (≤ 600 °C). On the other hand, Chakraborty et al. also noted the potentiality of $NH₃$ fuel as a renewable and carbon-free energy source, and reported a bottom-up approach to design a novel and high performance core–shell Ru–Cu nanoparticle catalyst for the oxidation of NH_3 to N_2 [\[13\]](#page--1-0). This is critically advanced study for $NH₃$ fuel, but the $NH₃$ oxidation was also evaluated by slightly low $NH₃$ concentrations (0.2%). Hence, further studies are needed to verify the potential use of the catalytic combustion of $NH₃$ as a renewable fuel.

Previously, we demonstrated that the $NH₃$ combustion activity of metal oxides increases with a decrease in their metal–oxygen bond energy [\[14\]](#page--1-0), unsupported manganese oxides with higher oxidation states tend to exhibit higher activity $[15]$, and sequentially impregnated $CuO_x/Ag/Al₂O₃$ exhibited high performance for catalytic $NH₃$ combustion among binary CuO_x and Ag supported on Al_2O_3 [\[16\].](#page--1-0) In addition, although CuO_x supported on aluminum oxide borates (10Al₂O₃.2B₂O₃) exhibits higher N_2 selectivity and thermal stability than other CuO_x catalysts supported on various materials, $CuO_x/Al₂O₃$ and $CuO_x/SiO₂$ show high activity and N₂ selectivity for catalytic $NH₃$ combustion, respectively [\[17\].](#page--1-0) Local structures around CuO_x supported on Al_2O_3 and/or $10Al_2O_3.2B_2O_3$ during the $NH₃$ combustion reaction were studied by operando XAFS, and we concluded that $CuAl₂O₄$ particles in their catalysts after aging at 900 \degree C for 100 h in air were preserved during the reaction [\[18\].](#page--1-0)

In this study, therefore, we focused on CuO_x catalysts supported on composite oxides of $Al_2O_3-SiO_2$ (aluminum silicates, $Al_6O_{13}Si_2$, $3Al_2O_3.2SiO_2$, $3A2S$) and SiO_2 after thermal aging at 900 °C to investigate catalytic properties for the combustion of $NH₃$ as an energy source. Moreover, the preparation methods for 3A2S as support materials were optimized to achieve high catalytic $NH₃$ combustion activity and high N_2 (low N_2O/NO) selectivity. Because the $CuO_x/3A2S$ catalyst exhibited high thermal stability, activity, and N_2 selectivity as expected, characterization of the local structure and operando characterization for $CuO_x/3A2S$ in addition to CuO_x/SiO₂ thermally aged at 900 °C during the catalytic NH₃ combustion were performed using high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping, operando X-ray absorption fine structure (XAFS) analysis, X-ray photoelectron spectroscopy (XPS), and gas adsorption techniques. Finally, we discuss the relation between the local structure of not only aged $CuO_x/3A2S$ but also $CuO_x/SiO₂$ and their catalytic NH₃ combustion properties.

2. Materials and methods

2.1. Catalyst preparation

3A2S as a catalyst support material was prepared using either an alkoxide method or a co-precipitation method.

Alkoxide method: Following a previous report [\[19\]](#page--1-0), Si(OC₂H₅)₄ (TEOS, Wako Pure Chemicals) was dissolved in C_2H_5OH (Wako Pure Chemicals) at 1 M at room temperature. After the addition of H_2O and HCl (Wako Pure Chemicals), the solution was stirred at 70 \degree C for 5 h, and a Si solution was prepared. The alcohol used was dehydrated. The concentrations of H_2O and HCl were $H_2O/TEOS = 2$ (mol/mol) and HCl/TEOS = 0.1 (mol/mol) , respectively. Al $[OCH]$ $(CH₃)₂$]₃ (AIP, Sigma–Aldrich) was refluxed and dissolved in $(CH₃)₂$ -CHCH2OH (Nacalai Tesque) to prepare an Al solution. The precursor solution was prepared by mixing the Al and Si solutions in a volume ratio of 3:2 at room temperature H_2O was added and the solution was stirred for 1 h to prepare a precursor solution. The precursor sols were dried at 110 \degree C for 48 h to obtain xerogel precursor powders, which were pulverized and calcined at $600 °C$ for 3 h and finally at 1000, 1200, or 1400 \degree C for 5 h in air. The 3A2S prepared by the alkoxide method and finally calcined at 1200 °C is abbreviated as 3A2S(A-1200), for example.

Co-precipitation method: Following a previous report [\[20\],](#page--1-0) an appropriate amount of $Al(NO₃)₃·9H₂O$ (Wako Pure Chemicals) and TEOS aqueous solution was combined with 10 wt% $NH₃$ solution (Wako Pure Chemicals), which was added dropwise under stirring (pH = 8) at room temperature. The precipitate was aged

Download English Version:

<https://daneshyari.com/en/article/6526703>

Download Persian Version:

<https://daneshyari.com/article/6526703>

[Daneshyari.com](https://daneshyari.com)