Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag₃PO₄/BiVO₄ electrode with low bias

Di Cao a,b, Yanbin Wang a, Meng Qiao a, Xu Zhao a,b,*

^a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China ^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

ARTICLE INFO

Article history: Received 23 November 2017 Revised 15 January 2018 Accepted 16 January 2018

Keywords:
Photoelectrooxidation
BiVO₄
Ag₃PO₄/BiVO₄ composite electrode
Norfloxacin
Degradation
Antibiotics

ABSTRACT

In this work, an Ag_3PO_4 -modified BiVO_4 electrode was prepared on an FTO substrate and used as a photoanode for photoelectrocatalytic degradation of organic contaminants. The photocurrent generated from the synthesized $Ag_3PO_4/BiVO_4$ photoelectrode under visible light irradiation was more than twice that from pure the BiVO_4 electrode, which could be attributed to the lower recombination rate of the photogenerated electron-hole pairs of the $Ag_3PO_4/BiVO_4$ photoanode, as proved by the electrochemical impedance spectroscopy and photoluminescence spectra. The $Ag_3PO_4/BiVO_4$ electrode was effective for the oxidation of organic pollutants in photoelectrocatalysis systems at relatively low bias potentials. A higher photoelectrocatalytic activity for norfloxacin degradation was observed when the $Ag_3PO_4/BiVO_4$ electrode was than with the BiVO_4 electrode, where norfloxacin with an initial concentration of 5 mg/L could be degraded within 90 min. The apparent rate constants of norfloxacin degradation using a BiVO_4 electrode and $Ag_3PO_4/BiVO_4$ are estimated to be 2.83×10^{-4} min⁻¹ ($R^2 = 0.994$) and 7.94×10^{-4} min⁻¹ ($R^2 = 0.996$), respectively. Analysis of the degradation intermediates indicated that the piperazine ring and the carboxyl group of the norfloxacin were attacked during the degradation process. The $Ag_3PO_4/BiVO_4$ photoanode was also proved to be effective for the degradation of two other antibiotics, sulfamethoxazole and oxytetracycline.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the increasing demand for clean energy and the growing problem of water pollution, the photoelectrocatalytic process that can be used for the generation of electricity [1] or the degradation of organic pollutants [2] has undergone rapid development in recent years. The most investigated photoanode material is $\rm TiO_2$. It can utilize ultraviolet light to achieve efficient degradation of various organic pollutants [3–5]. To make the most of the solar light, more visible-light-responsive semiconductors such as $\rm WO_3$ [6], $\rm BiVO_4$ [7–9], and $\rm Fe_2O_3$ [10] have been developed.

Monoclinic $BiVO_4$ is one of the most promising photoanode materials. It is an n-type metal oxide semiconductor, which has shown high performance in photoelectrochemical applications such as water splitting [11,12] and oxidation of organic pollutants [13]. Monoclinic $BiVO_4$ has a band gap of ca. 2.4 eV, and it can absorb visible light up to 525 nm [14]. $BiVO_4$ film electrodes have

been synthesized successfully using various methods. Kim and Choi synthesized nanoporous BiVO₄ electrodes with a diameter of about 70 nm using an electrodeposition–annealing method [15]. The synthesized electrode showed high activity for photoelectrochemical water splitting. Kuang et al. have synthesized a semitransparent BiVO₄ electrode, which further extends the applications of BiVO₄ electrodes [16].

However, one of the problems with BiVO₄ electrodes is still the low separation efficiency of photogenerated electron–hole pairs. To address this problem, various methods such as doping [17,18], constructing heterojunctions [1,19], and chemical treatment [20] have been tried to increase the separation efficiency of the photogenerated charge carriers. A W–Mo co-doped BiVO₄ electrode was successfully synthesized by Park et al. [21]. The doping of W and Mo has significantly improved the separation of the charge carriers; compared with pure BiVO₄ electrodes, a more than 10 times increase in water oxidation activity was observed after W–Mo doping. The formation of heterojunctions is also widely investigated, and various heterojunction structures such as WO₃/BiVO₄ [22], CdS/BiVO₄ [23], and Cu₂O/BiVO₄ [24] that have good photocatalytic performance have been constructed successfully.

^{*} Corresponding author at: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China. E-mail address: zhaoxu@rcees.ac.cn (X. Zhao).

Ag₃PO₄ is a visible-light-responsive semiconductor and has shown high activity for the photocatalytic degradation of various pollutants [25,26]. The preparation of Ag₃PO₄/BiVO₄ heterojunction photocatalysts has been studied and the Ag₃PO₄/BiVO₄ heterojunctions possess higher photocatalytic activity than singular Ag₃PO₄ or BiVO₄ photocatalysts [11,27,28]. However, to the best of our knowledge, the synthesis of Ag₃PO₄/BiVO₄ electrodes has not been reported yet, and their performance in a photoelectrocatalysis system has not been studied.

In this work, an Ag₃PO₄/BiVO₄ electrode was synthesized onto a fluorine-doped tin oxide (FTO) substrate. BiVO₄ electrodes using FTO glass substrate were prepared using an electrodeposition-based method, and then Ag₃PO₄ particles were grown in situ on the BiVO₄ film. The formation of Ag₃PO₄/BiVO₄ electrodes significantly promoted the separation of the photogenerated electron-hole pairs. Norfloxacin, one of the most widely used quinolone antibiotics, was used as a model pollutant in this study. The removal of oxytetracycline and sulfamethazole, which are the most used tetracyclines and sulfamilamides, were also studied. High activity for the degradation of the antibiotics was demonstrated. The enhanced mechanism was proposed.

2. Experimental

2.1. Materials

Bismuth(III) nitrate pentahydrate (Bi(NO₃)₃·5H₂O), potassium iodide (KI), p-benzoquinone, vanadylacetylacetonate (VO(acac)₂), and dimethyl sulfoxide were purchased from Sinopharm Chemical Reagent Co. and were used as received without further purification. Transparent FTO conductive glasses ($5 \times 2.5 \times 2.2$ mm, 6Ω) were purchased from South China Xiang Science & Technology Co. Milli-Q water (18.2 M Ω ·cm) were used throughout this study.

2.2. Preparation of BiVO₄ electrodes

BiVO₄ electrodes were prepared by electrodeposition reported by as Kim and Choi [15]. In brief, Bi(NO₃)₃·5H₂O was dissolved in a 0.4 M KI solution of 50 mL (pH was adjusted to 1.7 with HNO₃) to achieve a Bi(NO₃)₃·5H₂O concentration of 0.04 M. A 0.23 M p-benzoquinone solution of 20 mL was prepared by dissolving p-benzoquinone in absolute ethanol. The two solutions were mixed and stirred for 2 min before electrodeposition. A threeelectrode system was used for the deposition of BiOI. The working electrode was a pretreated FTO glass, the counter electrode was a Pt wire, and the reference electrode was a saturated calomel electrode (SCE). All potentials used were demonstrated vs. SCE in this work. The electrodeposition process was conducted at $-0.15\,\mathrm{V}$ for 5 min. Then a drop of DMSO containing 0.2 M VO(acac)₂ was cast onto the BiOI and the electrode was heated in a muffle furnace at 450 °C for 2 h. Excessive V₂O₅ was removed by immersing the electrode in 0.1 M NaOH for 30 min and then washing it with plenty of water. The BiVO₄ electrode was dried before use.

2.3. Preparation of Ag₃PO₄/BiVO₄ composite electrodes

The $Ag_3PO_4/BiVO_4$ composite electrodes were prepared by the in situ growth of Ag_3PO_4 on $BiVO_4$ electrodes. The $BiVO_4$ electrodes were immersed in $AgNO_3$ solutions at different concentrations (3, 6, 15, 30 mM). Then K_2HPO_4 was added to the solution to achieve Ag_3PO_4 concentration of 1, 2, 5, and 10 mM. The solution was slowly stirred under darkness for 4 h. The electrodes were dried in an oven and washed with water several times afterward to remove excessive NO_3 , HPO_4^{2-} , and the loosely bonded Ag_3PO_4

particles. The electrodes were denoted as Ag₃PO₄/BiVO₄-1, Ag₃PO₄/BiVO₄-2, Ag₃PO₄/BiVO₄-5, and Ag₃PO₄/BiVO₄-10, respectively.

2.4. Characterization techniques

The morphology of the electrodes was observed with a field emission scanning electron microscope (FESEM, HITACHI SU8020, Japan) equipped with an energy-dispersive X-ray spectroscopy system (EDX). The XRD patterns of the electrodes were measured on a diffractometer (Panalytical X'Pert Pro, Netherlands) with Cu K α radiation (λ = 1.5418 Å). Raman spectra were obtained from a Raman spectrometer (Horiba Scientific HR800, France). X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Perkin–Elmer PHI-5300 ESCA spectrometer with Al $K\alpha$ source. UV-visible diffuse reflectance spectra (UV-DRS) were obtained with a Shimazu S 2600 UV spectrophotometer. The content of Ag₃PO₄ and BiVO₄ in the electrode was measured by dissolving the electrode with 1 M HNO₃ and measuring the concentrations of Ag, Bi, and V by inductively coupled plasma optical emission spectrometry (ICP-OES) (for details see Text 1 in the Supporting Information).

2.5. Photoelectrochemical tests

The photoelectrochemical tests were performed in a $0.1 \,\mathrm{M}$ NaClO₄ solution using a three-electrode system, where the prepared Ag₃PO₄/BiVO₄ electrodes, Pt wire, and SCE were used as working electrode, counter electrode, and reference electrode, respectively. The electrodes were back-illuminated with a 300 W Xe lamp equipped with a 420 nm cutoff filter. The effective area of the electrode is $6.25 \,\mathrm{cm}^2$ and films were illuminated from the back of the FTO. Linear sweep voltammetry (LSV) measurements were conducted at a sweep rate of $50 \,\mathrm{mV/s}$, and i-t measurements were performed by applying a constant potential. All measurements are reported vs. the SCE. Electrochemical impedance spectroscopy (EIS) measurements were conducted from 0.1 to $100 \,\mathrm{000}$ Hz at open circuit potential (OCP).

2.6. Degradation experiments

The degradation experiments were also conducted using the above-mentioned three-electrode system. The electrolyte was 10 mM NaClO₄. The concentration of the antibiotics was measured by high-performance liquid chromatography (HPLC, Shimadzu LC-20AD, Japan) with an Agilent TC-C18 column (150 \times 4.6 mm). The specific measuring methods are listed in Table S1 in the Supporting Information. The leaching of Ag, V, and Bi was measured by inductively coupled plasma mass spectrometry (ICP-MS).

3. Results and discussion

3.1. Characterization of BiVO₄ and Ag₃PO₄/BiVO₄ electrodes

Fig. 1 shows the SEM images of the as-prepared pure BiVO₄ and composite Ag₃PO₄/BiVO₄ electrodes. It can be seen from Fig. 1A that the pure BiVO₄ electrode shows a 3D nanoporous structure and the diameters of the BiVO₄ nanoparticles are about 80 nm. Fig. 1B–E show the composite Ag₃PO₄/BiVO₄ electrodes with different Ag₃PO₄ amounts. Ag₃PO₄ nanoparticles with different morphologies were observed when Ag₃PO₄ concentration increased from 1 to 10 mM during the preparation process. For Ag₃PO₄/BiVO₄–1, only large Ag₃PO₄ nanoparticles were observed. It can be observed that composite Ag₃PO₄/BiVO₄–2 and Ag₃PO₄/BiVO₄–5 electrodes were covered with ordered Ag₃PO₄ nanoparticles, whereas Ag₃PO₄/BiVO₄–5 showed a 3D nanoporous structure with the most ordered morphology and the smallest diameter of Ag₃PO₄

Download English Version:

https://daneshyari.com/en/article/6526771

Download Persian Version:

https://daneshyari.com/article/6526771

<u>Daneshyari.com</u>