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a b s t r a c t

VOX-doped porous SiO2 solids (VOX-SiO2) were synthesized at different gelation and calcination temper-
atures through an in-situ one-step synthesis and evaluated by non-oxidative propane dehydrogenation
(PDH), exhibiting excellent catalytic performance. VOX-SiO2 catalysts were characterized by XRD, low-
temperature N2 adsorption/desorption, SEM, TEM, UV–Vis, Raman, XPS, NH3-TPD, H2-TPR, and TGA.
The structural and performance results for the catalysts reveal that gelation temperature has only a slight
effect on the surface acidity, textural properties and VOX species dispersion of VOX-SiO2 catalysts within a
reasonable temperature range (30–60 �C). The 60-VOX-SiO2-580 catalyst, with a gelation temperature of
60 �C, a calcination temperature of 580 �C, and prepared by the one-step synthesis method, obviously
shortens gelation process time by half compared to catalyst gelled at 30 �C and exhibits superior catalytic
performance for PDH. Over high gelation temperature (�75 �C) leads to the loss of integrity and decreases
catalytic activity of the VOX-SiO2 catalysts. Compared with the VOX-MCM-41 catalyst prepared by a one-
step hydrothermal method, VOX-SiO2 catalysts exhibit better catalytic activity and stability. Importantly,
at a reaction temperature of 580 �C, the 60-VOX-SiO2-580 catalyst exhibits remarkable long-term cat-
alytic stability in the eight reaction-regeneration cycles for PDH. Its propane conversion shows a slow
decrease from 55% to 45% for a 4 h reaction duration, but the propene selectivity remains at approxi-
mately 91%. The results of this work will be beneficial for further industrial development and application
of porous VOX-SiO2 solids in catalysis.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Lower olefins are essential petrochemical intermediates, espe-
cially propene, which is widely used as a feedstock in the produc-
tion of a variety of chemicals. Propene is mainly produced by steam
cracking and fluid catalytic cracking (FCC) [1–4]. Besides these two
approaches, catalytic dehydrogenation (DH) is an attractive alter-
native with the rapidly growing demand for propene and its
derivatives [5–8]. DH processes can be classified into non-
oxidative dehydrogenation and oxidative dehydrogenation of pro-
pane (ODHP). Although the latter (ODHP) has many advantages,
such as avoiding thermodynamic equilibrium limitations and
decreasing carbon deposition, the ODHP process unavoidably gen-
erates by-products due to deep oxidation of propene [9,10]. Non-

oxidative propane dehydrogenation (PDH) has been realized in
commercial applications, where Pt- and Cr-based catalysts are fre-
quently used [11,12]. Given the price and deactivation disadvan-
tages of both catalysts, especially the pollution problem
associated with CrOX species, current research tends to investigate
novel catalysts for DH, such as V-, Ga-, and Sn-based catalysts [13–
15].

V-based catalysts, which are one of the potential alternatives to
Pt- and Cr-based catalysts for commercial PDH [16], are reasonably
priced and environmentally friendly. In previous studies, these cat-
alysts have been used mainly in oxidative dehydrogenation reac-
tions [17–22]. Moreover, catalyst performance was strongly
affected when different supports, such as SiO2, ZrO2, and Al2O3,
were used [23,24]. To the authors’ knowledge, the use of Al2O3

and MCM-41 supports have been reported for V-based catalysts,
which exhibit attractive catalytic properties for PDH [23,25–28].
Bai et al. investigated the catalytic performance and surface chem-
istry of mesoporous c-Al2O3 supported V-based catalysts, where
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the catalysts achieved high catalytic activity and superior stability
[27]. Sokolov et al. systematically studied coke formation and cat-
alyst stability for VOX/MCM-41, VOX/SiO2-Al2O3, and VOX/Al2O3

catalysts on PDH. By comparing the regeneration performance of
V-, Cr-, and Pt-based catalysts, they found that the catalytic prop-
erties of the VOX/MCM-41 catalyst were stable for PDH in the
absence of gas-phase O2 and could be fully recovered with oxida-
tive regeneration. This full recovery was attributed to the high sta-
bility of VOX species [23,25,26]. Rodemerck et al. also reported a
relationship between catalyst deactivation and the VOX species in
the VOX/MCM-41 catalyst, where the catalyst shows superior cat-
alytic properties for PDH [28]. Hence, it can be concluded that V-
based catalysts could be a suitable candidate for a commercial
PDH process.

A mesoporous silica monolith has been reported and possesses
superior textural properties, but needs a lengthy gelation period at
room temperature (at least six weeks) [29,30]. Fortunately, Yang
et al. shortened the solvent evaporation process by using a
liquid-paraffin medium to seal the ethanol solution, meaning that
the prepared silica monolith can exactly copy the shape of the
reactor [31]. They also proposed a one-step method to synthesize
silica monoliths by doping various nanocrystals and found that
the prepared materials had potential catalytic applications, but
that vanadium species were not included [32].

Taking inspiration from the preparation and applications of
mesoporous silica monoliths, the authors have prepared
vanadium-doped porous silica solids (VOX-SiO2) by a one-step syn-
thesis in this study. The preparation method is environmentally-
friendly, without loss of the VOX precursor. The influence of gela-
tion and calcination temperatures on the properties and catalytic
performance of VOX-SiO2 catalysts for PDH reaction was studied
in detail. The prepared VOX-SiO2 catalysts were characterized using
a variety of state-of-the-art techniques and evaluated by a non-
oxidative propane dehydrogenation reaction.

2. Experimental

2.1. Preparation of porous VOX-SiO2 solids

Porous VOX-SiO2 solids were prepared by an in-situ one-step
synthesis [32]. Catalyst preparation was performed as follows.
NH4VO3 (0.14 g, 99.95%, Aladdin) was dissolved in ethanol
(10.00 g, Shanghai Chemical Agent Co. Ltd (China)) under mechan-
ical stirring. Subsequently, anhydrous oxalic acid (0.14 g, 98%,
Aladdin) was added to promote dissolution of NH4VO3, and the
mixed solutions were stirred for 30 min at 40 �C. When the mix-
ture was cooled to room temperature, 2.00 g of triblock copoly-
mers P123 (EO20PO70EO20, average Mn = 5800, Aladdin) was
added and stirred until well mixed; 4.32 g of TEOS (tetraethoxysi-
lane, 99.99%, Aladdin) and 0.40 g of aqueous HCl solution (0.8 M,
Shanghai Chemical Agent Co. Ltd (China)) were slowly dripped into
the mixture and stirred to dissolve them completely. Then the pel-
lucid solution was poured into a porcelain crucible and heated
under different temperatures (30 �C, 45 �C, 60 �C, 75 �C, and 90
�C) to form a silica gel. The prepared gel was sealed by a liquid-
paraffin medium (Aladdin) and heated at 60 �C for 18 h to remove
most of the ethanol and to form a rigid silica solid. Afterwards, the
liquid-paraffin was captured on filter paper and collected for reuse.
Finally, the obtained materials were calcined at 580 �C for 6 h
under air atmosphere to remove P123 from the silica solids. The
resulting catalysts of porous VOX-SiO2 solids (VOX-SiO2) with dif-
ferent gelation temperatures (recorded as GT-VOX-SiO2-580)
denoted as 30-VOX-SiO2-580, 45-VOX-SiO2-580, 60-VOX-SiO2-580,
75-VOX-SiO2-580, and 90-VOX-SiO2-580, respectively, where the
content of doping V is 5 wt%. Before the catalytic test, the catalysts

were crushed and then tested in powder form due to the limits of
the actual PDH reactor (8 mm inner diameter). As gelation temper-
ature increased, the gelation process time gradually became
shorter, as shown in Fig. 1. By the same preparation process, pure
silica solid (SiO2) was synthesized at a gelation temperature of 30
�C and a calcination temperature of 580 �C. In addition, the cata-
lysts with a gelation temperature of 60 �C were calcined at temper-
atures (recorded as 60-VOX-SiO2-CT) of 550 �C, 580 �C, 620 �C, and
650 �C. These catalysts were denoted as 60-VOX-SiO2-550, 60-VOX-
SiO2-580, 60-VOX-SiO2-620, and 60-VOX-SiO2-650, respectively.

For comparison, VOX-MCM-41 was also synthesized by a one-
step hydrothermal method. A certain amount of NH4VO3 was dis-
solved in deionized water (10.0 g) under mechanical stirring to dis-
solve it completely. CTAB (1.7 g) and NaOH (0.27 g) were dissolved
in deionized water (100.0 g) as a template solution. The NH4VO3

solution was added to the template solution under mechanical stir-
ring for 30 min. Then TEOS (10.5 g) was added dropwise to the
mixed solution under stirring at 60 �C for 4 h. The synthesized
gel was cooled overnight. Afterwards, it was transferred into a
Teflon-lined autoclave and aged at 120 �C for 48 h. The obtained
materials were washed five times with deionized water (750 ml)
and dried at 60 �C for 12 h. Finally, it was calcined at 550 �C for
4 h to form a V-MCM-41 sample, where the content of V is 5 wt%
according to the ICP result.

2.2. Characterizations

X-ray diffraction (XRD) analysis was collected on a Bragg-
Brentano diffractometer (monochromatic Cu Ka radiation, k =
1.5418 Å). The catalysts were scanned from 10� to 70� (2h value)
using a scan speed of 5�/min at 40 kV and 30 mA. The vanadium
and silicon contents of the catalysts were obtained with induc-
tively coupled plasma atomic emission spectroscopy (ICP-AES)
with Varian Vista MPX. Low-temperature N2 adsorption/desorp-
tion isotherms were measured using a NOVA4000 analyzer (Quan-
tachrome, USA) at 77 K. Before analysis, the catalysts were
degassed under vacuum at 300 �C for 4 h. The multipoint BET
method was utilized to calculate the surface areas. The pore vol-
umes of the catalysts were obtained at the maximum relative pres-
sure (P/P0). The pore size distributions of the catalysts were
derived from the desorption branch of the isotherms using the
BJH model. For micropore analysis, the pore volume and pore
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Fig. 1. The correlation between gelation time and temperature for VOX-SiO2

catalysts calcined at 580 �C.
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