ELSEVIER

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Journal of Catalysis Vol. 355, 2017

Contents

REGULAR ARTICLES

 $\label{eq:control} \mbox{Au-pd bimetallic alloy nanoparticle-decorated BiPO_4\ nanorods\ for\ enhanced\ photocatalytic\ oxidation\ of\ trichloroethylene$

pp 1-10

Yifan Zhang, Soo-Jin Park*

The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites

pp 11-16

Sha Li, Tyler Josephson, Dionisios G. Vlachos, Stavros Caratzoulas*

Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO_4^{2-}/TiO_2 catalysts

pp 17-25

Fang Liu, Tiefeng Wang*, Yanyan Zheng, Jinfu Wang

Reaction mechanism for the synthesis of $PODE_n$ on Brønsted and Lewis acid sites.

$Carbon\ decorated\ In_2O_3/TiO_2\ heterostructures\ with\ enhanced\ visible-light-driven\ photocatalytic\ activity$

pp 26-39

Xiao Zhou, Jiang Wu*, Qifen Li, Tao Zeng, Zheng Ji, Ping He, Weiguo Pan, Xuemei Qi, Chengyao Wang, Pankun Liang

Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst

pp 40-52

Alan J. McCue*, Antonio Guerrero-Ruiz, Carolina Ramirez-Barria, Inmaculada Rodríguez-Ramos, James A. Anderson*

Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions

pp 53-62

Jinlei Li, Guoliang Liu, Xiangdong Long, Guang Gao, Jun Wu, Fuwei Li*

ZnO/γ -Fe₂O₃ charge transfer interface in zinc-iron oxide hollow cages towards efficient photodegradation of industrial dyes and methanol electrooxidation

pp 63-72

Deepanjana Adak, Bibhutibhushan Show, Anup Mondal, Nillohit Mukherjee*

 ZnO/γ -Fe₂O₃ hollow cages in the form of thin films have been successfully synthesized using a facile and template free electrochemical method. Proper band alignment and synergistic integration between γ -Fe₂O₃ and ZnO make the material suitable for photocatalytic dye degradation and electrocatalyst towards methanol oxidation.

Download English Version:

https://daneshyari.com/en/article/6526942

Download Persian Version:

https://daneshyari.com/article/6526942

Daneshyari.com