

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Methanol synthesis from CO₂ hydrogenation over a Pd₄/In₂O₃ model catalyst: A combined DFT and kinetic study

Jingyun Ye a,b, Chang-jun Liu a, Donghai Mei c, Qingfeng Ge a,b,*

- ^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- ^b Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
- ^c Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352, USA

ARTICLE INFO

Article history: Received 20 September 2013 Revised 26 May 2014 Accepted 3 June 2014

Keywords:
Methanol synthesis
Carbon dioxide
Indium oxide
Palladium
Density functional theory
Kinetic modeling

ABSTRACT

Methanol synthesis from CO_2 hydrogenation on a model Pd/In_2O_3 catalyst, i.e. Pd_4/In_2O_3 , has been investigated using density functional theory (DFT) and microkinetic modeling. Three possible routes in the reaction network of $CO_2 + H_2 \rightarrow CH_3OH + H_2O$ have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier blocked the HCOOH route kinetically. The DFT results also suggest that $H_2COO^* + H^* \leftrightarrow H_2CO^* + OH^*$ and cis-COOH* $H^* \leftrightarrow H^* \leftrightarrow$

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hydrogenation of CO₂ into methanol has attracted attention worldwide for its role in chemical sequestration of CO_2 [1–4]. Many catalysts have been exploited for this reaction and among them, supported Pd catalysts including Pd/Ga₂O₃ [5], Pd/CeO₂ [6], Pd/ZnO [7] and Pd/ZrO₂ [8] have shown high activity. For supported Pd catalysts, the supports and promoters (mostly metal oxides) play important roles in the activity and selectivity for methanol production. For example, the effect of metal oxide supports has been found to follow the order of $Ga_2O_3 > ZnO > Al_2O_3 >$ $TiO_2 \approx Cr_2O_3 > SiO_2 \approx ZrO_2$ [5]. Bonivardi et al. showed that the addition of Ga₂O₃ into a Pd/SiO₂ catalyst increases the turnover rate by 500-fold and the selectivity toward methanol to 70% from 17% as compared with those on the clean Pd/SiO₂ [9]. Iwasa and coworkers suggested that the remarkable activity and selectivity of Pd/Ga₂O₃ catalysts for either methanol synthesis or for the methanol stream reforming were a consequence of Pd-Ga alloy formation [10,11]. The roles of metal oxides are summarized as:

E-mail address: qge@chem.siu.edu (Q. Ge).

(1) the metal oxides help to disperse and stabilize the Pd particles or form bi-metallic particles due to their strong interactions with Pd; (2) the metal oxides (basic or amphoteric) generally have a higher affinity toward $\rm CO_2$, and are thereby beneficial for $\rm CO_2$ adsorption and activation; (3) the carbon monoxide ascribed to the reverse water–gas shift (RWGS) mainly proceeds on the metal oxides since Pd has a low activity for the RWGS reaction [5].

 In_2O_3 has been well known for its unique physical properties of optical transparency and electrical conductivity [12–16]. However, the interesting catalytic properties of In_2O_3 have not attracted much attention until recently [17–22]. The Pd/In_2O_3 catalyst showed high selectivity for CO_2 , and correspondingly low CO productivity, in the methanol steam reforming (MSR) for hydrogen production and this was attributed to formation of the Pd-In alloy at low temperatures [10,22–27]. Iwasa et al. reported that methanol can be produced from CO_2 as a feed gas with H_2 on Pd/In_2O_3 , but not from CO [28]. Since methanol steam reforming is the reversal of methanol synthesis from CO_2 hydrogenation, methanol formation from CO_2 hydrogenation on Pd/In_2O_3 is expected to go through the direct hydrogenation of CO_2 .

The interfacial sites are unique to the supported metal catalyst and play an important role in heterogeneous catalysis. The synergetic effect of H_2 dissociation on Pd particles and the spillover of

 $[\]ast\,$ Corresponding author at: Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA.

the H adatoms to the support where CO₂ is adsorbed play important roles for methanol synthesis from CO₂ hydrogenation [29–31]. Very recently, Kwak et al. demonstrated that atomically dispersed Pd assisted by oxides, either as support (Al₂O₃) or promoter (La₂O₃), exhibits activity toward CO₂ reduction whereas Pd supported on a carbon nanotube support without oxide does not [32]. In fact, atomically dispersed supported metal catalysts have become an intensely focused area of research in recent years [33-37]. H₂ adsorption and dissociation on the pure Pd surfaces or particles have been studied both experimentally [31,38] and theoretically [39-41]. The interaction of H₂ and Pd is closely related to the H₂ pressure and particle size of Pd. The strong interaction between H atoms and the small Pd particles (Pd_n , n = 3, 4) results in incorporation of the H atoms into the Pd cluster [40], which strongly suppresses the activity of H for CO₂ hydrogenation. Consequently, activation of the strongly bound H atoms needs to be taken into account in CO₂ hydrogenation, especially on a supported Pd nanoparticle. In addition, the dissociation of H₂, H₂O and other intermediates (i.e. COOH, HCOOH, H₂COOH) produces a large amount of hydroxyls during the reaction, which are likely to adsorb on the In₂O₃ surface [18,20,21]. As a result, the effect of hydroxyls on the reaction mechanism has also to be examined carefully. For example, studies of CO₂ hydrogenation on Ni₄/ γ -Al₂O₃ [42] indicate that the hydroxyls on the γ -Al₂O₃ support alter the reaction pathway for CO₂ hydrogenation and ultimately affect the distribution of the final products.

Previously, theoretical studies of methanol synthesis from CO₂ were carried out on a pure metal surface (Cu(111) [43-45]), a metal cluster (Cu₂₉ [44]), a metal doped Cu surface [46] or a bare metal oxide (ZnO [47]). On the supported metal catalysts, the adsorption and dissociation of H2 usually occur on the surface of the metal particle. Murray et al. found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceriametal interface sites for a range of group VIII metal catalysts [48]. Heiz et al. reported that a single Pd atom supported on MgO is active for the production of benzene, but a free Pd atom is inert for this reaction [49]. The activity of Pd/MgO was attributed to the charge transfer from the support to the metal cluster as revealed by the DFT study. In fact, models such as Pd_n/MgO [49] and Ni_4/γ - Al_2O_3 [42] become attractive model systems. These simplified model systems capture key features of the metal-support interaction and provide interfacial sites as active sites for the catalytic transformation whereas quantitative agreement with the experimental system is generally not anticipated. Since CO₂ generally physisorbs on metallic Pd [50-52], the hydrogenation of CO₂ likely utilizes hydrogen adatoms generated on Pd and proceeds at the interface of the metal particle and the support. Herein, a Pd₄ cluster supported on In₂O₃ (Pd₄/In₂O₃) was designed as a model catalyst to elucidate the mechanism of methanol synthesis from CO₂ hydrogenation using a combination of density functional theory calculation and microkinetic study. The effects of H adatom activation, water and hydroxyl on the reaction mechanism and kinetics were also examined. The results confirmed that Pd on In₂O₃ would be a good catalyst for methanol synthesis from CO₂ hydrogenation.

2. Methodology and models

All the calculations were performed using the Vienna ab initio simulation package (VASP) [53–55], a periodic DFT code with projector augmented wave (PAW) potentials. The nonlocal exchange correlation energy was evaluated using the Perdew-Burke–Ernzerhof functional [56]. The 5s and 5p states of In were treated explicitly as valence states within the scalar-relativistic PAW approach [57]. A plane wave basis set with a cutoff energy

of 400 eV and a $(2 \times 2 \times 1)$ k-point grid generated with the Monkhorst–Pack scheme were found to give converged results. The atomic structures were relaxed using either the conjugate gradient algorithm or the quasi-Newton scheme as implemented in the VASP code until the forces on all unconstrained atoms were less than 0.03 eV/Å.

The $In_2O_3(110)$ surface is modeled with a $(1 \times \sqrt{2})$ supercell, built from the optimized In₂O₃ bulk unit cell with lattice parameters a = b = c = 10.18 Å [19,20]. The supercell has a dimension of $10.18 \text{ Å} \times 14.40 \text{ Å} \times 17.96 \text{ Å}$. The surface slab consists of 48 O atoms and 32 In atoms distributed in four atomic layers and is separated by a vacuum of 12 Å. The optimized Pd₄ cluster with a tetrahedral structure is supported on the In₂O₃(110) surface to generate the Pd₄/In₂O₃ model catalyst. In all calculations, atoms in the bottom two layers of the $In_2O_3(110)$ slab are frozen at their equilibrium bulk positions whereas those in the top two lavers together with the Pd₄ cluster and other species involved in methanol synthesis are allowed to relax. Test calculations by increasing the vacuum space to 15 Å showed that the adsorption energy of CH_3OH is -0.78 eV, almost exactly the same as that from the slab with 12 Å vacuum. The reaction energy and activation barrier for bi-HCOO* + H* \rightarrow H₂COO* + *, an elementary step in methanol formation, are +0.77 eV and 1.10 eV, respectively, also very close to those (+0.75 eV and 1.09 eV, respectively) from the slab with 12 Å vacuum.

The adsorption energies of intermediates were defined as:

$$\Delta E_{ad}(M) = E_{M/(Pd_4/In_2O_3)} - E_{(Pd_4/In_2O_3)} - E_{(M)}$$

where M represents molecules, intermediates involved in methanol synthesis as well as their corresponding products upon adsorption. $E_{\mathrm{M/(Pd_4/ln_2O_3)}},~E_{\mathrm{(Pd_4/ln_2O_3)}}$ and $E_{\mathrm{(M)}}$ represent the total energies of the Pd₄/In₂O₃ with the adsorbate and the clean Pd₄/In₂O₃, the free molecule or intermediate, respectively. In the case of co-adsorption and reaction on the surface, the relative energies were computed with respect to the sum of the total energies of the corresponding free molecules. According to the above definition, negative values indicate that the process is exothermic whereas positive values indicate that the process is endothermic. Transition states along a reaction pathway were determined in two steps: First, the nudged elastic band method [58], typically with 7-9 images was used to locate the likely transition state; second, the likely transition state was relaxed using the quasi-Newton algorithm with the same force convergence criterion. The relaxed transition state was then confirmed through frequency analysis.

3. Results and discussion

3.1. Pd_4 supported on $In_2O_3(110)$

The side and top views of $In_2O_3(110)$ and $Pd_4/In_2O_3(110)$ are shown in Fig. 1. The structure of In₂O₃(110) has been discussed in our previous papers in detail [19,20]. In the present study, we focus on $Pd_4/In_2O_3(110)$. The optimized Pd_4 cluster is a tetrahedron in the gas phase [59]. The initial $Pd_4/In_2O_3(110)$ structure was built by placing the optimized Pd₄ cluster on the In₂O₃(110) surface. After relaxation, the Pd₄ cluster is stabilized on the surface by bridging between the two In-O chains through the Pd-In and the Pd-O bonds (Pd₁-In₂: 2.62 Å, Pd₃-In₄': 2.78 Å, Pd₄-O₂: 2.16 Å, Pd_4-O_4' : 2.13 Å, Pd_2-O_3 : 2.11 Å, Pd_2-O_5' : 2.11 Å). We note that the original tetrahedral structure of Pd4 was distorted into a butterfly shape after optimization. The average Pd-Pd bond length is shortened from 2.61 Å in a Pd₄ tetrahedron to 2.56 Å. The angles of $\angle Pd_{1\text{-}4\text{-}3}$ and $\angle Pd_{1\text{-}2\text{-}3}$ are opened from 60° to $\sim 85.0^{\circ}$, whereas the dihedral angle between the Pd₁₋₂₋₄ plane and the Pd₃₋₂₋₄ plane is opened from 70.5° to 105.6°. The $Pd_4/In_2O_3(110)$ structure is

Download English Version:

https://daneshyari.com/en/article/6527232

Download Persian Version:

https://daneshyari.com/article/6527232

<u>Daneshyari.com</u>