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A B S T R A C T

Standard mathematical models for phase change at the nanoscale involve an implicit assumption that the
latent heat is released at the bulk phase change temperature. They also assume the latent heat to be constant
(while the melt temperature decreases with decreasing size). There is clear experimental evidence that
this is not the case. In this paper, we examine the formulation of the Stefan problem at the nanoscale and
present a new form of Stefan condition which correctly reflects the latent heat release, including both melt
temperature and latent heat depression. We go on to show that the standard formulation can lead to melt
rates up to three times slower than in reality.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nanotechnology is a rapidly growing interdisciplinary area with
a broad range of applications. Lying at the heart of nanotechnol-
ogy is the nanoparticle, a unit of matter with a critical diameter
between 1 and 100 nm. In many applications, including drug delivery
systems, phase change memory and nanolithography, nanoparticles
are subjected to relatively high temperatures. In order to under-
stand particle behavior in these environments and so help in the
future design of nanoparticles it is crucial to have the correct the-
oretical description. It is well-known that the thermal response of
nanoparticles can be significantly different to that of macroscale par-
ticles consequently, in this paper, we develop a mathematical model
for phase change at the nanoscale. The formulation is significantly
different to that provided in previous studies and suggests melt-
ing rates up to three times faster than previously predicted. Earlier
mathematical models lead to melting times on the order of picosec-
onds for 10 nm particles, see Ref. [1]. This is of the order of the
relaxation time for many materials meaning that if the true melt rate
is in fact more rapid then the whole mathematical formulation of
the nanoscale Stefan problem may need to be altered to account for
non-classical thermodynamics.

Theoretical modelling of phase change at the macroscale is rela-
tively well understood. However, at the nanoscale it is well-known
that standard models may break down or need adapting, even for
sizes where continuum theory still holds. It has been demonstrated
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that the heat equation based on Fourier’s law may be inaccurate at
the nanoscale and certainly the implicit assumption of infinite speed
of heat transfer is incorrect [2]. Quantities such as the surface ten-
sion, phase change temperature and latent heat have been shown
to vary significantly with size. The melt temperature variation was
theoretically predicted in 1909 by Pawlow and demonstrated exper-
imentally in 1956 by Takagi, see Ref. [3]. Lai et al. [4] point out that
the thermodynamics of small systems cannot be fully understood
without a detailed investigation of the heat exchange and particu-
larly the latent heat. They use a scanning nanocalorimeter to provide
the first direct measurements of latent heat for tin nanoparticles.
Their results show a clear and significant decrease in both latent heat
and melt temperature with particle size. Subsequently more accurate
calorimetry techniques were developed to measure the latent heat
release during nanoparticle melting, see Ref. [3], which confirms the
findings in Ref. [4]. The results of Liu and Wang [5, Fig. 2c] show
clearly that latent heat decreases are proportionally greater than
those of the melt temperature.

Probably the simplest form of mathematical model which can
provide insight into melting at the nanoscale involves a spheri-
cally symmetric nanoparticle. This has been studied in the context
of continuum theory in Refs. [1,6–10] for example. As discussed
in Refs. [1,3,11] continuum theory may be applied to heat transfer
and phase change models down to diameters of the order 2–5 nm,
depending on the material. In this paper, we will re-examine the
standard mathematical model and show that it is incorrectly formu-
lated. The model will be discussed in the context of tin nanopar-
ticles, for which there exists a large amount of experimental data.
For tin the melting point and latent heat depression are of the order
15% and 70% below the bulk values respectively [4]. Surface tension
is also known to vary with particle size. For a sphere it may be
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approximated via an expansion in terms of the reciprocal radius,
s sl ≈ s0,sl(1 − 2d/R), where s0,sl is the bulk value for surface tension
and d is the Tolman length. The Tolman length describes the devi-
ation in surface tension between a planar and curved surface, it is
unknown for most materials, however it is typically small, for water
values are quoted around 0.5Å, for tin around 3.7Å [12,13]. Hence, in
comparison to the melting point and latent heat variation the varia-
tion of surface tension is relatively small and will be neglected in the
present study.

Now consider the spherically symmetric melting of a nanoparticle
due to some external heat source. In the solid and liquid layers heat
equations hold,

qscs
∂h

∂t
= ∇ • (ks∇h) (1)

qlcl

(
∂T
∂t

+ v • ∇T
)

= ∇ • (kl∇T) , (2)

where q, c, k represent the density, specific heat and conductivity,
T and h are the temperatures in the liquid and solid respectively.
Subscripts s and l denote solid and liquid. The central solid region,
0 ≤ r ≤ R(t), is fixed while the surrounding liquid region, R(t) ≤ r ≤
Rb(t) moves in the radial direction with velocity v due to the change
in density between the phases. The position of the melt interface,
r = R(t), is described by the Stefan condition

qsL(t)Rt = ks ∇h
∣∣

r=R(t) − kl ∇T
∣∣

r=R(t) . (3)

Macroscale models often involve an assumption of constant ther-
mophysical properties within each phase, a constant melt tempera-
ture and constant latent heat L(t) = L1(t) = L∗

m (Lm represents the
latent heat and the star superscript indicates the bulk value). At the
nanoscale, the variation of melt temperature has a significant effect
on the Stefan condition, such that L is often replaced with

L2(t) = L∗
m + (cl − cs) (Tm − T∗

m) , (4)

where Tm denotes the melt temperature. This expression is fre-
quently termed the ‘effective latent heat’. The melt temperature may
be approximated by the standard Gibbs-Thomson relation

Tm(t) = T∗
m

[
1 − 2s∗

sl

qsL∗
mR

]
. (5)

The Stefan problem with L2(t) is the one found in theoretical
investigations of nanoparticle melting [1,6–10] and also in the lit-
erature for the solidification of supercooled materials [14–18]. In
all of these papers it is assumed qs = ql. Allowing density varia-
tion through the phase change introduces a kinetic energy term v2

l /2
into Eq. (4). The form with kinetic energy may be found in Ref. [8]
for spherically symmetric nanoparticle melting and the Cartesian
version in Ref. [14].

2. Governing equations for phase change

To model the evolution of a particle we require various conserva-
tion laws. Further, to simplify the analysis we will make a number
of assumptions: gravity and viscous effects are negligible; spheri-
cal symmetry is imposed; each phase is incompressible (which then
fixes the solid region). Under these assumptions we may write the
following system of governing equations. Firstly, mass is conserved,

∂q

∂t
+ ∇ • (qv) = 0 . (6)

Conservation of mechanical energy is given by

∂

∂t

(
1
2
qv2

)
+ ∇ •

(
1
2
qv2v + Pv

)
− P∇ • v = 0 . (7)

This equation states that the change in kinetic energy is bal-
anced by the input of kinetic energy through the bulk flow, the work
done by pressure, P, and the rate of reversible conversion to internal
energy. Conservation of total energy is

∂
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(
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2

v2
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+ ∇ •

(
q

[
u +
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2

v2
]

v + q + Pv
)

= 0 , (8)

where u is the internal energy/unit mass and the conductive heat
flux q = −k∇T. This equation states that the rate of change of total
energy depends on energy flow through convection, conduction and
the rate of work done by pressure. These equations are discussed in
more detail in Refs. [14, §2.3E] [19, §3.3, §10.1].

The assumptions of incompressible phases, spherical symmetry
and a stationary solid indicate constant q (within each phase), vl =
vl(r, t)r̂ and vs = 0. Mass conservation then reduces to ∇ • v = 0 and
so the final term of Eq. (7) is zero. Subtracting Eq. (7) from Eq. (8) and
rearranging leads to

q

(
∂u
∂t

+ v • ∇u
)

= −∇ • q , (9)

which represents conservation of thermal energy. It is more con-
venient to write this equation in terms of temperature. Following
Ref. [19, p.315] when the density is constant in each phase we can
define the specific heat capacity at constant volume, cV = (du/dT)|V,
and so express the total derivative of u as

du
dt

= cV
dT
dt

. (10)

Substituting for q, the standard form of heat equation then fol-
lows from Eq. (9)

qcV

(
∂T
∂t

+ v • ∇T
)

= ∇ • (k∇T) . (11)

This equation holds in either phase, with q, cV, v replaced by the
appropriate values for solid or liquid.

The internal energy per unit mass may be written u = h − P/q,
where h is the specific enthalpy. For an incompressible material the
specific heat capacity at constant pressure

cP =
dh
dT

∣∣∣∣
P
. (12)

The difference between specific heats measured at constant vol-
ume and pressure is proportional to the thermal expansion coeffi-
cient. If the density is considered constant in each phase (and hence
the volume) then we may neglect thermal expansion and set cV = cP.
This is generally true for solids and liquids except for at extremely
high pressures. Consequently, we denote the specific heat simply as
c and may integrate Eq. (12) to give

h = cs(h − Tm) in the solid

= cl(T − Tm) + Lm in the liquid. (13)

The definition of latent heat is key to the present derivation: it
is the jump in specific enthalpy at the phase change temperature, that
is Lm(t) = (hl − hs)

∣∣
h=T=Tm(t). We discuss this apparently obvious

statement in more detail in the subsequent section.
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