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A B S T R A C T

The objective of the present work is to investigate the Rayleigh–Bénard convection in non-Newtonian fluids
with arbitrary conducting boundaries. A linear and weakly nonlinear analysis is performed. The rheologi-
cal behavior of the fluid is described by the Carreau model. As a first step, the critical Rayleigh number and
wavenumber for the onset of convection are computed as a function of the ratios n

b and n
t of the thermal

conductivities of the bottom and top slabs to that of the fluid. In the second step, the preferred convection
pattern is determined using an amplitude equation approach. The stability of rolls and squares is investi-
gated as a function of (nb, nt) and the rheological parameters. The bounded region of (nb, nt) space where
squares are stable decreases with increasing shear-thinning effects. This is related to the fact that shear-
thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns
[1]. For a significant deviation from the critical conditions, the nonlinear convection terms and nonlinear vis-
cous terms become stronger, reducing overall the stability domain of squares. The largest Nusselt number,
Nu, is obtained for perfectly conducting boundaries. For a given (nb, nt), the stable solution yields the largest
Nusselt number. The enhancement of heat transfer due to shear-thinning effects is significantly reduced for
poorly heat conducting plates.

© 2016 Published by Elsevier Ltd.

1. Introduction

The problem of Rayleigh–Bénard convection (RBC) in Newtonian
and non-Newtonian fluids layer heated from below and cooled from
above remains one of the classical problems of fluid dynamics and
heat transfer. In spite of intensive studies made in the past and exten-
sive research work undertaken so far to understand the competition
between convective structures (rolls, squares and hexagons) which
are often influenced by the boundary conditions (see Holmedal
et al. [2]; Clever and Busse [3]) and other parameters such as
temperature-dependence of viscosity (see White [4]; Palm [5];
Richter [6]; Olivier and Booker [7]; Busse and Frick [8]; Jenkins [9]),
there are still many outstanding issues that need to be answered.

Maybe one of the most important question to be addressed is the
effect of conductive horizontal plates on the heat transfer and the
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convection patterns. For instance, in geophysical problems and par-
ticularly in the context of the Earth’s mantle convection, continents
and oceans impose different thermal boundary conditions at the
top of the mantle: continents act as insulators while a fixed tem-
perature is imposed by oceans. These different thermal boundary
conditions affect the convective flow and the heat transport in the
Earth’s mantle [10].

Actually, in most numerical investigations of RBC, the plates are
assumed to be infinitely heat conducting, and a fixed temperature
at the boundaries is imposed, while in engineering and geophysical
problems as well as in laboratory experiments the boundaries have
a finite conductivity. This may lead to a discrepancy between the
experimental and the numerical/theoretical results. The ratios nb and
n

t between the thermal conductivities of the bottom and top slabs
and that of the fluid may have a significant effect and must be taken
into account as additional parameters [11].

The influence of the thermal conductivity of the boundaries on
Rayleigh–Bénard convection was first investigated in the Newtonian
case by Busse and Riahi [12] using a weakly nonlinear analysis. They
considered the situation where n

b = n
t = n � 1 and found that

the wavelength of convection flow becomes very large in comparison
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with the height of the layer and only square patterns are stable. This
result was confirmed and extended to the fully nonlinear problem by
Proctor [13] using a ‘shallow water theory’. Afterwards, Jenkins and
Proctor [14] determined the critical value of the thermal conductiv-
ities ratios n

b = n
t = nc at which the preferred planform changes

from square cell to roll. For Pr > 10, they found that the preferred
planform is rolls when n > 1, and squares when n < 1. Le Gal
et al. [15] carried out experiments to study Rayleigh–Bénard convec-
tion in silicone oil confined between two glass plates. So that n

b =
n

t = n = 7. Near the threshold of convective instability, at 4 < 0.021,
where 4 is the relative distance from the onset of instability, they
observed cells of square planforms. But when 0.024 < 4 < 0.057,
the amplitude of two mutually perpendicular roll sets underwent
periodic oscillations in antiphase with another; as 4 was increased
and convection became more intense, one set became predominant
and then a unique steady-state roll set was established. This experi-
ment was subsequently modified by Le Gal and Croquette [16] : glass
was replaced by plexiglass and water was used as the working fluid,
so that n = 0.4. In contrast to the preceding experiment, squares
were observed in a wide range of 4 values without any signs of desta-
bilization. The authors think that in the first case, the silicone oil
behaves as a mixture and the observed features were governed by
the thermophoresis.

Although extensive studies have been devoted to understand
the influence of the thermal boundary conditions on the Rayleigh–
Bénard convection in Newtonian fluids, only a limited number of
works have dealt with complex fluids. In comparison with the
Newtonian system, the nonlinearity of the rheological law introduces
an additional coupling in the velocity component. Recently, Bouteraa
and Nouar [17] have investigated the influence of shear-thinning
effects on the convection in a horizontal layer of a shear-thinning
fluid between two horizontal symmetric plates of finite thermal con-
ductivity. The rheological behavior of the fluid is described by the
Carreau model. The authors found that: (i) the characteristic time of
instability t0 increases significantly when n < 1, (ii) the critical value
of the shear-thinning degree ac above which the bifurcation becomes
subcritical increases with decreasing n, and (iii) the critical value nc
at which the planform changes from square-cell solution (n < nc)
to two-dimensional roll solution (n > nc) decreases with increasing
shear-thinning effects.

In some experimental situations, nt �= n
b. For Newtonian fluids,

Riahi [11,18] has studied this problem and demonstrated, using a
linear stability analysis of stationary flows the enormous influence
of thermal boundary conditions (when n

b �= n
t) on the competi-

tion between the convection patterns. He found that squares are
stable when rolls are unstable and vice versa, and always hexago-
nal patterns are unstable. No hysteresis effect is found. In addition,
Riahi [18] has also shown that square planforms are preferred in a
bounded region Y in the (nb, nt)-space coordinate system and rolls
are favored only outside Y. When Pr < 0.025, the region Y is
quite small and disappears as Pr = 0. However, for Pr > 7, Y is
largest and nearly independent of Pr. Using nonlinear developments,
Clever and Busse [3,19] demonstrated in the case of stress-free nearly
insulating top plate and highly conducting no-slip lower plate, that
two-dimensional rolls are stable near the onset, but become unsta-
ble at higher Rayleigh number and are replaced by which is called
hexaroll convection.

From experimental point of view, Darbouli et al. [20] have inves-
tigated Rayleigh–Bénard convection for viscoplastic fluids confined
in a cylindrical cell. They used two different horizontal plates of
finite thermal conductivity. The bottom and upper walls are made
respectively of copper alloy and glass. They used distilled water as
Newtonian fluid to validate their experimental setup and an aqueous
solution of Carbopol 940 as viscoplastic fluid. In these situations,
the ratios n

t and n
b are estimated to n

t = 2 and n
b = 201.6 for

both fluids (authors estimated that the solution of Carbopol 940 has

the same thermal conductivity than water). Hence, it is no longer
possible to rely on the assumption that the plates are held at fixed
and uniform temperatures, which corresponds to plates with infinite
thermal conductivity.

The purpose of the present work is to study the influence of arbi-
trary thermal-conducting top and bottom boundaries on nonlinear
processes of Rayleigh–Bénard convection, and to see the influence
of the shear-thinning effect on the preferred flow pattern. The finite
conductivity of the slabs remains one explanation for differences
between results obtained in experiments and numerical investiga-
tions. We hope that our findings will shed new light on the inter-
pretation of the results obtained by Darbouli et al. [20] although the
fluid used is not only shear-thinning but has also a yield stress.

2. Physical and mathematical model

2.1. General equations and parameters

We consider a horizontal layer of a shear-thinning fluid of height
d̂ confined between two horizontal plates that are infinite in extent
and which have a thickness Kd̂, where K is of order unity. The outer
surface of the bottom and top plates are kept at constant tempera-
tures respectively T̂0 + D T̂/2 and T̂0 −D T̂/2, with DT̂ > 0. The fluid
has density q̂, thermal conductivity k̂, thermal coefficient expansion
(at constant pressure) b̂ and viscosity l̂0 at zero shear rate. The top
slab has a thermal conductivity k̂t

p and a thermal diffusivity ĵt
p. The

corresponding quantities for the bottom slab are denoted k̂b
p and ĵb

p .
Here and in what follows, (t) and (b) refer to the top and bottom
and the quantities with hat (.̂) are dimensional. Because of the ther-
mal expansion, the temperature difference between the two plates,
induces a vertical density stratification. Heavy cold fluid is above a
light warm fluid. For small DT̂, the fluid remains motionless and the
heat is transferred by conduction, with a linear temperature profile
across the fluid layer.

In the fluid, 0 < ẑ < d̂, the hydrostatic solution and the
temperature profile are:

dP̂
dẑ

= −q̂0ĝ
[
1 − b̂

(
T̂ − T̂0

)]
and

T̂cond = T̂0 +
DT̂

1 + K/n(b) + K/n(t)

[
1
2

− ẑ

d̂

]
, (1)

where, ĝ is the acceleration due to gravity. Here, the z-axis is directed
upwards, with the origin located at the bottom plate. The reference
temperature T̂0 is the temperature in the middle of the fluid layer
and q̂0 is the fluid density at T̂0. Here, T̂0 = T̂1 −

(
1/2 + K/nb

)
DT̂f ,

where T̂1 is the temperature on the outer surface of the bottom plate
and DT̂f the temperature difference between the top and the bottom
of the fluid layer: D T̂f = D T̂/(1 + K/nt + K/n(b)).

The temperature profile in the top and bottom plates are:

T̂cond = T̂0 +
DT̂

nt + K
(
1 + nt/nb

) [
1 +

K

2

(
1 − nt

nb

)
− 1

2
nt − ẑ

d̂

]
,

d̂ ≤ ẑ ≤ (1 + K)d̂ (2)

and

T̂cond = T̂0 +
DT̂

nb + K
(
1 + nb/nt

) [
1
2
nb − K

2

(
1 − nb/nt

)
− ẑ

d̂

]
,

−Kd̂ ≤ ẑ ≤ 0. (3)

When the bottom and top plates are poor thermal conductors, a
large part of DT̂ occurs across the plates, and remains only a small
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