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A B S T R A C T

Utilization of new approaches in the determination of drug solubility in supercritical fluids can reduce the
computation time and represent reliable results. This also leads to more applications of the supercritical tech-
nology in the field of drug manufacturing. A least-square support vector machine (LSSVM) approach is employed
in this study in order to predict 33 different drug solubility in supercritical CO2. The solubility of the drugs is
estimated as a function of temperature, pressure, supercritical CO2 density, and 20 different chemical sub-
structures. LSSVM results are then compared to those obtained from 8 previously reported semi-empirical
correlations. Satisfying predictions are performed by the proposed LSSVM with an average absolute relative
deviation of 4.92% and determination coefficient of 0.998 for the testing dataset. Therefore, the proposed
LSSVM can be applied as a reliable predictive tool to estimate the drugs’ solubility, if drugs’ chemical structures
are given.

1. Introduction

Utilization of supercritical fluids as alternatives for organic solvents
are considered due to adjustable properties of the supercritical fluids
with pressure and temperature [1]. These fluids are applied in different
fields such as separation, processes, reactions, purification, and particle
sizing of pharmaceuticals [2]. Increasing energy demand in recent
decades resulted in further consumption of fossil fuels and increasing
carbon dioxide (CO2) emissions from energy producing sources (such as
power plants). Carbon dioxide capture and storage (CCS) is concerned
with separation, transportation, and long-term isolation of the emitted
CO2 using various technologies (i.e. post-combustion capture, in-
tegrated gasification combined cycle, and oxyfuel). Captured CO2 can
be theoretically stored in oceans, and geological sub-surfaces regardless
of the captured amount and also can be used for mineral carbonation or
industrial uses. However, in reality, coupling of the captured CO2 from
large scale emitters and geological storage is most likely to be employed
as commercial implementation of the CCS. Capture technologies imply
different strategies to increase the molar concentration of the flue gas
from combustion so that the compression to supercritical state of the
captured CO2 would be viable for geological storage. In geological CO2

storage, the captured CO2 will be stored in a storage with desired rates

of injectivity, storage capacity, and containment security. Injection of
the supercritical CO2 to oil reservoirs is known as a common enhanced
oil recovery (EOR) method [3]. The supercritical CO2 has also attracted
many attentions in pharmaceutical applications due to its non-toxic,
environmentally safe, inflammable, and economical characteristics.
Furthermore, possession of accurate predictions for solubility of the
solid solute in a supercritical fluid plays an important role in developing
any supercritical fluid technology. Investigation of pharmaceutical
compounds’ solubility under different temperature and pressure con-
ditions requires determination of the thermophysical properties
through reliable predictive models [4–6]. Reliable experimental data on
drugs’ solubility in the supercritical region is required to prevent dis-
turbances to the equilibrium [5]. Therefore, the necessity of a reliable
predictive tool is clarified in order to estimate the solubility of the drugs
in supercritical CO2 used for designation of the corresponding pro-
cesses.

Different methods, based on equations of state or density are ap-
plied in order to develop correlations based on experimental data
[2,7–13]. Semi-empirical correlations are often applied due to their
ease of application and nonrequirement of employing directly un-
detectable physiochemical properties (such as critical properties and
sublimation pressure) which require application of different methods of
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calculation [6].
Artificial intelligence algorithms have found many applications in

different scientific fields such as oil and gas [14,15]. The solubilities of
different gases such as CO2, H2S, and NH3 in amine solutions and ionic
liquids are investigated by Baghban et al. [15–19].

This study investigates the applicability of the least square support
vector machine approach in predicting 33 different drugs’ solubility in
supercritical CO2. Model development is based on experimental data
reported in previous papers [20–30]. Hyperparameters of the proposed
model are determined using particle swarm optimization (PSO) method
coupled with the LSSVM. This proposed model estimates the target
variable (drug’s solubility) as a function of five independent variables
(i.e. temperature, pressure, supercritical CO2 density, and 20 different
substructures of drug). Comparing the results from the proposed model
with 8 semi-empirical correlations [2,7–13] reveals the better perfor-
mance of the LSSVM. To the best of our knowledge, no records are
available on the application of LSSVM to predict the drugs’ solubility in
supercritical CO2, so far.

2. Theory

2.1. Least square support vector machine (LSSVM)

Support vector machine (SVM) is an intelligent approach based on
the concepts of statistical learning theory (SLT) and structural risk
minimization (SRM) [31,32] which has found many applications in
different regression, classification, and pattern recognition problems.
This approach was firstly proposed by Vapnik [33]. In SVM, the non-
linear input area is transformed into a high-dimensional properties area
and a hyperplane is found using a non-linear mapping. Furthermore,
the solution to the SVM problem is available through solving a quad-
ratic programming. This will lead to a time-consuming computation
due to difficulties in solving a set of non-linear equations. In order to

overcome the deficiencies of the SVM approach, Suykens and Vande-
walle [34] represented the least square version of the support vector
machine. The LSSVM benefits from SVM characteristics while di-
minishes the SVM deficiencies by substituting the SVM’s non-linear
constraints with the linear ones resulting in simple computation
methods.

For a given training dataset of {xk, yk}, k= 1, 2, …, N, where xk
∈Rn denotes the kth input data, yk is the corresponding output value
and N refers to the number of data points in the training dataset. The
LSSVM utilizes the non-linear function to map the training data set from
input space to the high dimensional space and uses the following ex-
pression to estimate the non-linear relationship of input and output
variables:
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where ω represents the weight factor and b is the bias term. n and nh
are dimensions of the data space and the unknown feature space
[35,36]. LSSVM minimizes the following cost function (2) subjected to
the corresponding constraints (3):
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where γ represents the regularization parameter responsible for bal-
ancing the complexity of the model and training error, and ek is re-
gression error. The Lagrangian form of the LSSVM is given by:
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Lagrangian multipliers are denoted by αk. The solution to Eq. (4) is
available through equating the equation’s derivatives to zero:

Table 1
Ranges of experimental data on drug solubility in supercritical CO2.

System no. Solute Temperature (K) Pressure (bar) No. of data points References

1 Rosuvastatin 308–348 121.6–354.6 45 [20]
2 Simvastatin 308–348 121.6–354.6 45 [20]
3 Atorvastatin 308–348 121.6–354.6 45 [20]
4 Lovastatin 308–348 121.6–354.6 45 [20]
5 Fluvastatin 308–348 121.6–354.6 45 [20]
6 Anastrazole 308–348 122–355 45 [21]
7 Letrozole 308–348 122–355 45 [21]
8 Exemestane 308–348 122–355 45 [21]
9 Atropine 308–348 122–355 45 [22]
10 Diazepam 308–348 122–355 45 [22]
11 Codeine 308–348 122-355 45 [22]
12 Carbamazepine 308–348 243–355 38 [22]
13 Benzocaine 308–348 122–355 40 [23]
14 Naproxen 308–348 122–355 40 [23]
15 Metronidazole benzoate 308–348 122–355 40 [23]
16 Methylparaben 308–348 122–355 40 [24]
17 Bisacodyl 308–348 122–355 39 [24]
18 Methimazole 308–348 122–355 39 [24]
19 Budesonide 338–358 213–385 21 [25]
20 Lamotrigine 318–348 121.6–354.6 36 [26]
21 Clozapine 318–348 121.6–354.6 27 [26]
22 Zopiclone 313–333 100–250 21 [27]
23 Nimodipine 313–333 100–250 21 [27]
24 alpha-Tocopherol 313–353 199–349 24 [28]
25 δ-Tocopherol 313–353 199–349 24 [28]
26 Retinol 313–353 200–350 20 [28]
27 beta-Carotene 313–353 200–320 23 [28]
28 Vitamin D3 313–353 200–350 23 [28]
29 Vitamin D2 313–353 200–280 19 [28]
30 Vitamin K1 313–353 200–350 24 [28]
31 Cefixime trihydrate 308–328 183–335 18 [29]
32 DA 308–348 122–355 45 [30]
33 CP 308–348 122–355 44 [30]
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