

## Journal of CO<sub>2</sub> Utilization



journal homepage: www.elsevier.com/locate/jcou

## Recent applications of polyoxometalates in CO<sub>2</sub> capture and transformation



<sup>a</sup> Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China

<sup>b</sup> College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China

Bing Yu<sup>a,b,\*</sup>, Bo Zou<sup>a</sup>, Chang-Wen Hu<sup>a,\*</sup>

| ARTICLE INFO                                      | A B S T R A C T                                                                                                                       |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Keywords:                                         | $CO_2$ chemistry has drawn considerable attention as abundant, low cost, and renewable carbon source in the past                      |
| Polyoxometalates                                  | decades. The natural stability of $CO_2$ made its utilization a daunting challenge under mild conditions. Recently,                   |
| Carbon dioxide fixation<br>Carbon dioxide capture | there has been significant progress of CO <sub>2</sub> fixation by using cheap and abundant functionalized polyoxometalate            |
|                                                   | (POM) catalysts. In this review, the POM catalytic system for transformation of $CO_2$ into valuable compounds                        |
|                                                   | such as urea, cyclic carbonate, quinazoline-2,4(1 <i>H</i> ,3 <i>H</i> )-diones, $\alpha$ -methylene cyclic carbonate, oxazolidinones |
|                                                   | etc. were discussed. The future of POM catalysis for sustainable chemistry lies in the synthesis of highly func-                      |
|                                                   | tionalized task-specific POM catalysts, and rational design of novel reactions which would eventually pave the                        |
|                                                   | pathway for the establishment of green, effective, inexpensive and sustainable technologies.                                          |

#### 1. Introduction

Over the last few decades, carbon dioxide (CO2) as a natural gas has gained worldwide attention due to its steadily increasing concentration in the atmosphere, which may cause climate changes and global warming [1]. In the recent decades, tremendous efforts have been devoted to reducing CO2 emission and conversion of CO2 into value-added fine chemicals or fuels [[2]]. To a great extent,  $CO_2$  will be one of the most abundant carbon sources in the future, because the fossil sources are limited [3]. Besides CO<sub>2</sub> capture and storage/sequestration (CCS) [2a,2b,4], an alternative strategy for reducing CO<sub>2</sub> emission is chemical fixation of CO<sub>2</sub>, delivering organic carbonates [5], polycarbonates [6], carbamates [7], ureas [7,8], carboxylic acids [9], valuable heterocycles [10], and MeOH [11], etc. as products (Scheme 1). Although the chemical fixation of  $CO_2$  is not efficient as CCS strategy for reducing  $CO_2$ emission in a short period, the utilization of CO<sub>2</sub> as a renewable and nontoxic C1 resource for the construction of value-added fine chemicals is significantly attractive.

Molecular metal oxide clusters, so-called polyoxoanions or polyoxometalates (POMs), are commonly referred to a class of compounds based on early transition metal (group 5 and 6) oxide building blocks with a general formula of  $(MO_x)_n$ , where M = Mo, W, V, Nb, Ta etc [12]. When the POMs exclusively contain one type of metal and oxygen, the clusters are called as isopolymetalates, such as the Lindqvist type anion [M<sub>6</sub>O<sub>19</sub>]<sup>2-</sup>. When additional elements (e.g. P, Si, As, S, rare earth element, etc.) are coordinated in POMs, they are known as heteropoly complexes, such as the Keggin and Wells-Dawson type anions.

https://doi.org/10.1016/j.jcou.2018.05.021

In the past decades, capture and transformation of CO<sub>2</sub> has been widely explored. Particularly, a plethora of POM-based compounds have been reported as efficient catalysts or promoters for CO2 fixation processes. Although the basic science of the synthesis, modification and application of POM-based materials are well documented [12b,13], few of them have specialized in the application of POMs in this sustainable field previously [14]. The goal of this review is to provide a comprehensive summary of current developments for CO<sub>2</sub> fixation using POM related systems. The combination of environmentally benign POMs and sustainable CO2 chemistry will open new avenues in the field of POM catalysis.

### 2. CO<sub>2</sub> binding and capture with POMs

CO<sub>2</sub> capture and separation is an important research area from the viewpoints of environmental protection and industrial processes [15]. Organic and inorganic bases have been widely used in CO<sub>2</sub> capture, while they are usually toxic, corrosive and difficult to regeneration [16]. Alternatively, a new class of porous materials have been investigated, such as zeolites and metal-organic frameworks (MOFs). Recently, POMs were reported to show great potential in terms of CO<sub>2</sub> capture and separation, based on their flexible binding modes to small molecular.

In 1998, Kozik et al reported that tetraheptylammonium salts of Co (II), Ni(II), Mn(II)-substituted  $\alpha$ -Keggin ([SiW<sub>11</sub>O<sub>39</sub>M]<sup>n</sup>) and  $[GeW_{11}O_{39}M]^{n-}$ ),  $\alpha_2$ -Wells-Dawson ( $[P_2W_{17}O_{61}M]^{m-}$ ) could react with CO<sub>2</sub> in nonpolar solvents. The CO<sub>2</sub> adducts were characterized by

<sup>\*</sup> Corresponding authors. E-mail addresses: bingyu@zzu.edu.cn (B. Yu), cwhu@bit.edu.cn (C.-W. Hu).

Received 10 March 2018; Received in revised form 9 May 2018; Accepted 20 May 2018 2212-9820/ © 2018 Elsevier Ltd. All rights reserved.



\$\$ industrialized process

Scheme 1. Chemical fixation of CO<sub>2</sub>.



Fig. 1. Thermal ellipsoid plots of polyoxoanions located in 1 (top left) and 2 (top right). Ball-stick representation of polymeric chain structure of complex 1 (bottom). Adapted from Ref. [18] with permission.

UV/vis, IR, and <sup>13</sup>C NMR, albeit no crystalline samples were obtained [17]. It was hypothesized that a direct  $\eta^1$  metal-carbon bond between the transition metal and CO<sub>2</sub> was possible, which could be stabilized by hydrogen bonding utilizing both hydrogen atoms from water.

The combination of POMs and CO<sub>2</sub> was observed in aqueous solution by Xu et al in 2008. Two unusual CO<sub>2</sub>-ligated compounds,  $(C_3H_5N_2)_3(C_3H_4N_2)$  [PMo<sub>11</sub>CoO<sub>38</sub>(CO<sub>2</sub>)]·4H<sub>2</sub>O (1) and  $(C_3H_5N_2)_4$ [SiMo<sub>11</sub>CoO<sub>38</sub>(CO<sub>2</sub>)]·4H<sub>2</sub>O (2) were obtained, which first shown the  $\mu$ - $\eta^1$ , $\eta^1$ -OCO linear coordination mode (Fig. 1) [18].

A much larger metal oxide cluster [{( $Mo^{VI}$ )  $Mo_5^{VI}O_{21}(H_2O)_6$ } $_{12}{Mo_2^VO_4(CH_3COO)}_{30}$ ]<sup>42-</sup> (denot-ed as { $Mo_{132}$ }) was reported to pick up 30 CO<sub>2</sub> molecules inside the capsule (3) (Fig. 2) [19]. With CO<sub>2</sub> bubbled, the acetates in { $Mo_{132}$ } are replaced by carbonate ligands individually, and this process is reversible to release CO<sub>2</sub> in acidified solution upon mild heating.

Various POM-based hybrid materials were synthesized for  $CO_2$  separation. For instance,  $Na_3[PW_{12}O_{40}]$  contained membrane can

remarkably increase the permeability of CO<sub>2</sub>, resulting the ratio of permeance of CO<sub>2</sub> over N<sub>2</sub> up to 3200 [20]. Additionally, the strong interaction of Na<sub>1.5</sub>H<sub>11.4</sub>[ZnMo<sub>12</sub>O<sub>40</sub>{Zn<sub>2</sub>}]·5.5H<sub>2</sub>O, a inorganic 3D frameworks, with CO<sub>2</sub> was observed, which has been successfully utilized for separating CO<sub>2</sub>/CH<sub>4</sub> in gas chromatography [15]. Moreover, POM-LDH nanohybrids (LDH = layered double hydroxide) [21] also exhibited a significant improvement on CO<sub>2</sub> absorption (0.74 mmol g<sup>-1</sup> at 0 °C, 101.325 kPa), compared to Mg-Al-LDH (0.08 mmol g<sup>-1</sup> under the same condition). Mizuno group [22] reported a flexible organic-inorganic ionic crystals with ordered pores, which can selectively adsorb CO<sub>2</sub> from acetylene. Besides the surface adsorption of pores, the interaction of POMs with CO<sub>2</sub> played important roles in the CO<sub>2</sub> capture process. Particularly, the oxygen-rich surface of the polyanions might enhance the selective adsorption of CO<sub>2</sub> over acetylene.

Download English Version:

# https://daneshyari.com/en/article/6528485

Download Persian Version:

https://daneshyari.com/article/6528485

Daneshyari.com