ELSEVIER

Contents lists available at ScienceDirect

Journal of CO₂ Utilization

journal homepage: www.elsevier.com/locate/jcou

Model for calculating the wellbore temperature and pressure during supercritical carbon dioxide fracturing in a coalbed methane well

Zhao-Zhong Yang^a, Liang-Ping Yi^{a,*}, Xiao-Gang Li^{a,*}, Yu-Ting Chen^b, Jun Sun^c

^a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Avenue 8, Chengdu 610500, China

^b CNPC Offshore Engineering Co., Ltd., Beijing 100028, China

^c Down-Hole Operating Company, Chuanqing Drilling and Exploration Engineering Co., Ltd., Chengdu 610051, China

ARTICLE INFO ABSTRACT Supercritical CO₂ fracturing can form a more complex fracture network in rocks than hydraulic fracturing and Keywords: Supercritical carbon dioxide avoid aqueous phase trapping damage in reservoirs. Thus, it is a promising alternative to hydraulic fracturing for Fracturing enhancing the production of low-permeability hydrocarbon reservoirs. In this study, a new numerical model for Coalbed methane well predicting the wellbore temperature and pressure during supercritical CO₂ fracturing was established based on Temperature thermodynamics, heat transfer, fluid mechanics, and a numerical solution method. In the new model, the Pressure physical properties of CO₂ are calculated with the Span-Wagner and Vesovic models, and the heat generated by fluid friction losses is absorbed by the tubing and CO₂ according to the contact coefficient. The model was used to examine the influences of the injection rate and temperature on the wellbore pressure and temperature. The results indicated that both the heat transfer and pressure in the wellbore are transient processes in the initial stage of injection; as the injection time increases, the heat transfer and pressure in the wellbore can be considered steady processes. The CO₂ temperature in the wellbore is considerably affected by both the injection

temperature and rate, whereas the wellbore pressure is greatly affected by the injection rate but weakly affected by the injection temperature. The CO_2 pressure in the wellbore decreases rapidly as the well depth increases because of high fluid frictional resistance, so a drag reducer suitable for liquid CO_2 needs to be developed.

1. Introduction

Hydraulic fracturing is an indispensable technology for enhancing the production of low-permeability hydrocarbon reservoirs such as coal and shale gas reservoirs [1,2]. However, hydraulic fracturing requires a large amount of water [3,4], and extraneous water may cause aqueous phase trapping damage in reservoirs [5]. If the reservoir contains clays, water leaking into the matrix during fracturing will cause the clays to swell, which will decrease the absolute permeability. Therefore, some researchers have called for the development of a non-damaging fracturing fluid [6]. Supercritical carbon dioxide (SC-CO₂) is a promising fracturing fluid alternative to water because it not only overcomes the disadvantages of water-based fracturing fluids but also captures and stores CO₂ [7,8]. CO₂ is converted into a supercritical fluid when the temperature and pressure are both higher than their critical values $(T_c = 31.1 \degree C \text{ and } P_c = 7.38 \text{ MPa})$. The SC-CO₂ fluid has many unique physicochemical properties: its density is close to that of a liquid, which helps increase the fluid pressure in the fracture, and its viscosity and diffusivity are close to that of a gas [9], which is beneficial for opening microcracks in the formation. CO2 is expected to replace coalbed

* Corresponding authors. E-mail addresses: ylpfrac@163.com (L.-P. Yi), swpuadam@126.com (X.-G. Li).

https://doi.org/10.1016/j.jcou.2018.06.010

methane in reservoirs because of the well-known competitive adsorption effect [10–12]. Moreover, SC-CO₂ fracturing can form a more complex fracture network in rocks than hydraulic fracturing [13–15], so CO₂ in the downhole should be converted to a supercritical fluid. Accurately predicting the wellbore temperature and pressure of CO₂ during SC-CO₂ fracturing is a necessary but complex task.

There have been quantitative studies on predicting the temperature in and around a well. The prediction methods are mainly classified into two groups [16]: analytical [17–21] and numerical [9,16,22–25]. Analytical models are easier to solve than numerical models and can calculate the wellbore fluid temperature field under simple working conditions. Analytical models can be used to calculate the temperature field during hydraulic fracturing because the physical properties of water are slightly affected by the temperature and pressure. However, the relationship between the physical properties of CO_2 and the temperature and pressure is very complex. Therefore, a numerical method should be adopted to calculate the temperature and pressure fields during the SC-CO₂ fracturing process.

At present, numerical models for temperature field calculation are widely used in drilling and fracturing. Raymond [22] was the first to

Received 4 March 2018; Received in revised form 12 May 2018; Accepted 13 June 2018 2212-9820/ © 2018 Elsevier Ltd. All rights reserved.

Nomenclature		Re	Reynolds number, dimensionless
		T_1	Temperature of CO ₂ inside the tubing, K
c_1	Heat capacity of CO_2 , J/(kg K)	T_2	Tubing temperature, K
c_2	Heat capacity of tubing, J/(kgK)	T_3	Temperature of fluid in the annulus, K
c_3	Heat capacity of fluid in the annulus, J/(kg K)	T_4	Casing temperature, K
<i>c</i> ₄	Heat capacity of casing, J/(kg K)	T_5	Cement sheath temperature, K
c_5	Heat capacity of cement sheath, J/(kg K)	Ts	Surface temperature, K
c_{v}	Volumetric heat capacity, J/(kg K)	ν_1	CO_2 flow velocity, m/s
G_f	Geothermal gradient, K/m	ω	Iteration factor, dimensionless
h_1	Convection coefficient inside the tubing, $W/(m^2 K)$	ρ_1	CO_2 density, kg/m ³
$p_{ m in}$	Injection pressure, MPa	ρ ₂	Tubing density, kg/m ³
$P_{\rm r}$	Prandtl number, dimensionless	ρ ₃	Annulus fluid density, kg/m ³
q	Volume flow rate of CO_2 , m^3/s	ρ ₄	Casing density, kg/m ³
$q_{ m in}$	Injection rate, m ³ /s	ρ ₅	Cement sheath density, kg/m ³
Q	Total friction heat of the unit length tubing, W/m	φ^o	Ideal part of the Helmholtz energy, dimensionless
Q_1	Friction heat absorbed by the CO_2 , W/m	φ^r	Remaining part of the Helmholtz energy, dimensionless
Q_2	Friction heat absorbed by the tubing, W/m	μ_0	Viscosity at the zero-density limit, Pas
r_1	Tubing inner radius, m	λ_0	Thermal conductivity at the zero-density limit, W/(mK)
r_2	Tubing outer radius, m	λ_1	Thermal conductivity of CO_2 , W/(m K)
r_3	Casing inner radius, m	λ_2	Thermal conductivity of the tubing, W/(mK)
r_4	Casing outer radius, m	λ_3	Thermal conductivity of fluid in the annulus, W/(mK)
r_5	Cement sheath outer radius, m	λ.4	Thermal conductivity of the casing, W/(m K)
$R_{\rm c}$	Gas constant, 0.1889 kJ/(kg·K)	λ_5	Thermal conductivity of the cement sheath, W/(mK)

propose a model for calculating the transient and quasi-steady-state temperature distributions during circulation, but this model does not consider the axial heat conduction in the formation. Researchers have used Raymond's model to successively establish temperature field prediction models for different drilling conditions [16,23,24]. However, these models consider the fluid in the wellbore and annulus to be water instead of CO₂. There have been few reports on calculating the temperature field for SC-CO₂ fracturing. Guo and Zeng [9] established a coupling model for the wellbore transient temperature and pressure during SC-CO₂ fracturing. They calculated the CO₂ physical parameters with the REFPROP software and investigated the influences of the injection temperature and rate on the wellbore temperature and pressure. However, their model neglects the axial heat conduction in the annulus. In addition, all present models [9,16,24] assume that the heat generated by the fluid friction losses is only absorbed by the fluid. However, it may be more scientifically sound to assign friction heat to the fluid and tubing according to a certain rule.

In this study, our aim was to establish a new numerical model for predicting the wellbore temperature and pressure during SC-CO₂ fracturing in a coalbed methane. The proposed model predicts the CO_2 physical parameters by using the Span–Wagner and Vesovic models, and the heat generated by fluid friction losses is absorbed by the tubing and CO_2 according to the contact coefficient.

2. Physical model

The physical model of the SC-CO₂ fracturing process is shown in Fig. 1. CO₂ enters the tubing through the wellhead at a specified temperature (T_{in}). The annular fluid and CO₂ in the tubing are separated by the packer, so the fluid in the annulus is stagnant at a specified pressure. Because the fluid pressure during the fracturing process is higher than the CO₂ critical pressure, the enthalpy of phase transition can be neglected [9].

Fig. 1. Physical model of the SC-CO₂ fracturing process.

Download English Version:

https://daneshyari.com/en/article/6528557

Download Persian Version:

https://daneshyari.com/article/6528557

Daneshyari.com