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Available online 26 May 2016 Accurate characterization of two phase bubbly flows is crucial in many industrial processes such as fluidized re-
actors, ore froth flotation, etc. The bubble size determines the rate at which components present in the gas phase
are transferred to the surroundings and vice versa while bubble rate defines the appropriate bubbly flow regime
occurring in the heterogeneous system. This research work employs deep neural networks (DNNs) to predict
bubble size and bubble rate using data obtained from validated computational fluid dynamics (CFD) computa-
tions. Pure water and slurry (in conditions similar to those employed in mineral froth flotation) case studies
are evaluated. It is found that the DNN can predict the CFD results accurately when using four hidden layers, de-
scribing discontinuities in the bubbly flow regime. The relative errors computed between the CFD data and the
prediction obtained by the DNN is as low as 8.8% and 1.8% for bubble size and bubble rate, respectively. These re-
sults confirm that the DNN can be applied to sophisticated fluid dynamics systems and allow developing better
control process strategies since once the DNN is trained critical variables can be computed very efficiently. The
slurry case study, although restricted to the application of mineral froth flotation, can also be generalized to
other industrial operations keeping the exact same procedure.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Determining bubble size distribution and other characteristics of
bubbly flows is a challenge and a necessity for a number of industrial
operations such as mineral processing, oil industry, wine industry,
wastewater treatment, fluidization reactors, bioreactors, etc. [1]. Partic-
ularly, in the field of mineral processing the search for new, improved
and more accurate models to represent the efficiency of the froth flota-
tion operation, one of the largest tonnage operations in the industry
field, is still an ongoing process. Therein, it is widely accepted that the
bubbly flow characteristics are key for a correct determination of the ef-
ficiency of the separation process and so far no analytical descriptions
have been capable to gather all the information to understand the

process. Although many models have been suggested as a possible rep-
resentation of the froth flotation process and its sub-processes [2], they
have proved to follow the trends the real systems exhibit. However, the
uncertainty embedded in computing the efficiency of the operation is
still an unresolved matter. Such uncertainty varies from 5 to 30% [3,4].
Computational fluid dynamics (CFD) tools are able to capture all com-
plexities present in real froth flotation systems [5]. However, tracking
the behavior of bubbly flows is an open problem.

The application of ordinary neural networks (NNs) has penetrated
many applications fields dramatically and the mapping and prediction
of fluid dynamic equations has been a highly fruitful field for scientific
research [6]. One variation of NNs is the use of Deep Neural Networks
(DNNs) which is one of the most recent developments in machine
learning and represents a tremendous progress compared to the ordi-
nary NN framework. DNNs are essentially neural networks with several
(i.e. more than one) hidden layers that are pre-trained to reduce the
limitations of the classic gradient based backpropagation training. In-
creasing the number of hidden layers improves the capability of the net-
work to solve highly difficult, nonlinear and dynamic functions when
compared to shallow networks. Nevertheless, to use a gradient-based
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optimization strategy may be not effective when the gradient propa-
gates across multiple nonlinearities. To avoid this limitation, in [7] it
was presented a procedure which consists of pre-training one layer at
a time, demonstrating that it is possible to learn in deep NN-architec-
tures. In the recent years, the applications of this method with Restrict-
ed Boltzmann Machine have grown exponentially to address pattern
recognition problems in computer vision [8], automatic speech recogni-
tion and natural language processing [9]. Surprisingly, despite the fact
that DNNs have also been used for time seriesmodeling and forecasting
achieving promising results [10], the prediction problem has not been
addressed exhaustively with DNNs.

2. Modeling CFD response with DNN

Reliable computational fluid dynamics (CFD) data are often used to
simulate pressure and velocity fields in complex systems such as bubbly
flows in different applications such as mineral froth flotation among
others [11]. The CFD data and the uncertainties behind the use of turbu-
lent frameworks collect features of realistic systems which may be val-
idated with empirical and semi-empirical models [12,13]. In [14]
experimental and CFD results of two-phase fluid flow in a tube were
predicted using ordinary NN. Those results showed that theNN can pre-
dictwith a reasonable accuracy the complex flow. In this study, the bub-
ble size and bubble rate are obtained using a set of CFD data. The
prediction considered employs the leave-one-out strategy where the
whole dataset but one is used to train the DNN tool predicting the one
not seen in the training step. This procedure is repeated by shifting
the unseen data to the next one until completing the whole set of CFD
data.

Fig. 1 shows the DNN architecture employed in this paper. In order
to map both bubble size and bubble rate, two decoupled and indepen-
dent DNNs are used. The first network is trained to learn the “hidden”
function that estimates bubble size using the following inputs variables:
initial velocity; fluid viscosity; fluid density; surface tension; and, con-
tact angle. The second DNN is trained to learn the “hidden” function
that outputs the bubble rate from the same set of inputs. It is worth
highlighting that four out of the five input variables correspond to

fluid characteristics that are possible to be measured. The fifth input
variable represents the inlet velocity computed with respect to the
cross surface area of the nozzle throughout which the air injected into
the simulated tank. The hidden layers activation functions are nonlinear
(e.g. sigmoid), but the activation function of the output layer is linear. As
a result of this procedure, the DNN architecture that is able to represent
accurately the CFD results is reported.

3. Methodology

3.1. Details of CFD simulations

CFD simulations of bubbly flowswere obtained from a 3D cylindrical
system sketched in Fig. 2. It consists of a container 50 cm height and
20 cm diameter filled with fluid up to 40 cm. The gas flowrate enters
at the bottom through an inlet located at the center of the base with a
2 mm diameter. A mesh of 600,122 cells was considered to resolve the
mass balance and momentum equations according to the equations
presented in a previous research work [15]. The fluid media considered
in the research were pure water and slurry phase, where the latter is
similar to that observed in mineral froth flotation operations, demon-
strating the significant differences occurring when passing from a
fluid free of solids and reagents (frother-free aqueous solution) to an-
other with 30% solid with frother reducing its surface tension. The
main properties of both fluids are presented as follows.

Fig. 1. The DNN architecture employed to learn the hidden function that delivers the
bubble size and rate by making use of the following information: gas inlet velocity; fluid
viscosity; fluid density; surface tension; and, contact angle.

Fig. 2. Sketch of the CFD 3D cylindrical system used to obtain bubble volume and bubble
rate.

Nomenclature

a Main or major bubble axis, [m]
b Secondary or minor bubble axis (perpendicular to “a”),

[m]
db Bubble diameter, [m3]
d0 Inlet diameter for gas in the system, [m]
k Bias of the encoder of the DNN
ke Bias of the decoder of the DNN
Q Air flowrate, [m3/s]
RMS Root-mean-squared deviation
Vb Bubble volume, [m3]
X Input vector of the DNN
X ̂ Estimation of X in the DNN pre-training
W Weights of the encoder of the DNN in the pre-training
We Weights of the decoder of the DNN in the pre-training
μslurry Dynamic viscosity of the slurry phase
μfluid Dynamic viscosity of water
ρl Water density, [kg/m3]
ρslurry Slurry density, [kg/m3]
ρs Solid density, [kg/m3]
σ Surface tension, [Nm]
φl Water percent in the slurry phase
φs Solids percent in the slurry phase
ϕ Volume fraction of solids in the slurry phase
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