ELSEVIER

Contents lists available at ScienceDirect

Journal of CO₂ Utilization

journal homepage: www.elsevier.com/locate/jcou

Calcium precursor from stirring processes at room temperature for controllable preparation of nano-structure CaO sorbents for high-temperature CO₂ adsorption

Bosheng Zhao^{a,b}, Liang Ma^{a,b}, Huihu Shi^{a,b}, Kai Liu^{a,b}, Jianbin Zhang^{a,b,c,*}

^a College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

^b Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot 010051, China

^c Key Laboratory of Coal-based CO2 Capture and Geological Storage, China University of Mining and Technology, Xuzhou, 221008, China

ARTICLE INFO

Keywords: Calcium oxide Calcium carbonate precursors CO₂-storage material (CO₂SM) Carbon dioxide adsorption

ABSTRACT

Nano-structure CaO crystals with an average size of $480 \text{ nm} \times 255 \text{ nm}$ (length and width) were prepared by simply roasting CaCO₃ precursors at 900 °C for 2 h. The CaCO₃ precursors with a pure vaterite crystalline phase were readily synthesized by a room temperature stirring method using Ca(NO₃)₂ and CO₂ storage material (CO₂SM). The CO₂SM played an important role in providing CO₃²⁻ source and structure controlling. The effects of CO₂SM dosage, Ca²⁺ concentration, and stirring time on the crystallization of CaCO₃ precursors were investigated. In addition, the CO₂SM was successfully regenerated by simply exposing the filtrate from the preparation process to CO₂ for further preparing CaCO₃ precursor. The as-obtained CaO crystals exhibited a strong CO₂ adsorption capacity up to 17.18 mmol g⁻¹ under 0.1 MPa at 700 °C.

1. Introduction

CO₂ emission is a major contributor to global warming and climate change [1,2]. A variety of strategies, such as liquid absorption [3,4], solid adsorption [5–7], and membrane separation [8–10], have been developed for CO₂ capture. CaO powder is an excellent solid adsorbent candidate of CO₂ capture due to its reversible reaction with CO₂ to form CaCO₃ (CaO + CO₂ \rightleftharpoons CaCO₃) [11–15]. Hence, many advanced techniques have been developed for the production of CaO, such as precipitated calcium carbonate (PCC) [16,17], dry planetary ball-milling method [18], self-assembly template synthesis (SATS) [19], and sol-gel method [20,21] Among them, roasting CaCO₃ precursor can yield highly thermal-stable CaO with excellent activity. However, the synthesis of CaCO₃ precursors usually requires templates or additives, and long reaction process [22–25].

In the present work, a template- or surfactant- free method was developed for the preparation of morphology controllable CaCO₃ precursors via the reaction of CO₂SM with Ca(NO₃)₂. The produced CaCO₃ was used to prepare CaO crystals by 2 *h* roasting at 900 °C. The CO₂SM, a white powder, was prepared by absorbing CO₂ with equimolar ethylenediamine (EDA) and EG solution [26]. The influences of CO₂SM dosage, Ca²⁺ concentration, and stirring time on the crystallization of CaCO₃ precursors were systemically investigated. The filtrate from the

preparation process was successfully recycled at least five times to capture CO₂ for further preparing CaCO₃ precursors with uniform morphology. Our work provided a new strategy for preparing CaO crystals with strong reduction performances and high CO₂ capture capacity up to 17.18 mmol·g⁻¹ under 0.1 MPa at 700 °C. Fig. 1 shows the entire preparation process.

2. Experimental section

2.1. Materials

Analytical grade EG was purchased from Beijing Reagent Company (Beijing, China). Analytical-grade EDA and Ca(NO₃)₂·4H₂O were purchased from Tianjin Reagent Company (Tianjin, China). Compressed CO₂ (99.999 vol %) was purchased from the Standard Things Center (Beijing, China). The CO₂SM was derived from the equimolar system EDA + EG up-taking CO₂. All other chemical reagents were analytical grade and did not require any treatment.

Formation of CO₂SM. Pure compressed CO₂ was continuously bubbled through the EG + EDA system (molar ratio = 1: 1). In this process, the EG + EDA system showed a white sticky solid at t = 20 min and the solution completely changed to solid CO₂SM at t = 105 min. The solid CO₂SM was washed three times with ethanol.

https://doi.org/10.1016/j.jcou.2018.04.012 Received 2 February 2018; Received in revised form 24 March 2018; Accepted 10 April 2018 2212-9820/ © 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China. *E-mail address:* tadzhang@pku.edu.cn (J. Zhang).

Fig. 1. Controllable preparation of nano-structure CaO crystals and it's adsorption for CO₂. In this process, the CaCO₃ precursor with a pure vaterite crystalline phase was readily synthesized by a room temperature stirring method with Ca(NO₃)₂ and CO₂SM.

After washing, the solid CO₂SM was vacuum dried at 60 $^\circ C$ for 5 h and stored at room temperature.

2.2. Preparation of CaCO₃ precursor and CaO crystals

CaCO₃ precursors was prepared by stirring 6–60 g/L CO₂SM in 50 mL 0.02–0.5 mol/L water solution of Ca(NO₃)₂ at 1000 rpm at room temperature for 0.25 min-2 h. The precipitates were filtered by vacuum filtration, washed with double-distilled water and ethanol three times, and dried at 120 °C for 2 h to afford CaCO₃ precursor. The produced CaCO₃ precursor was heated in air to 900 °C at the heating rate of 5 °C min⁻¹ in 2 h to afford CaO crystals.

2.3. Characterization

The CaCO₃ precursor's images were observed using the scanning electron microscopy (SEM, Quanta FEG 650, China) with an accelerating voltage of 20 kV and high magnification transmission electron microscopy (HR-TEM, JEM-2100, Japan) with an accelerating voltage of 200 kV. Their X-ray diffraction (XRD) patterns were collected on a powder X-ray diffract meter (Siemens D/max-RB) with Cu K α radiation at the scanning rate of 0.05° S⁻¹. Fourier transform infrared spectroscopy (FTIR) was recorded on a Nexus 670 infrared spectrophotometer. Isotherms were analyzed using 3 H-2000PS2 BET instrument with the Barrett-Joyner-Halenda (BJH) theory to give the pore parameters, including Brunauer-Emmett-Teller BET surface area (m² g⁻¹), total pore volume (cm³ g⁻¹), and average pore size (nm). Thermogravimetry analysis (TGA, Entzsch-Sta 449) was employed to measure the weight percentage of CaCO₃ precursors.

2.4. Temperature-programmed reduction (TPR)

The H₂-TPR of CaO crystals was conducted by a TP-5080 apparatus equipped with a thermal conductivity detector (TCD). CaO crystals (50 mg) were put in a quartz tube reactor with an i.d. of 6 mm, pretreated at 400 °C for 30 min under N₂ gas flow (30 mL·min⁻¹) to remove physically adsorbed H₂O and/or CO₂, and cooled to room temperature. The crystals were then reduced with 30 mL·min⁻¹ 5 vol% H₂/N₂ with the temperature linearly increased from room temperature to

900 °C at the heating rate of 10 °C min $^{-1}$. The H₂ consumption of CaO crystals was recorded with the TCD.

2.5. Temperature-programmed desorption (TPD)

The alkalinity of CaO crystals was measured by CO_2 -TPD using the TP-5080 apparatus equipped with the TCD. The CaO crystals (100 mg) were put in a quartz tube reactor, heated at 900 °C for 30 min under He gas flow (30 ml min⁻¹) to remove moistures and other adsorbed gases, and cooled to room temperature, 50 °C, 600 °C, 700 °C or 800 °C, respectively. The pre-treated CaO crystals were then exposed to pure CO_2 at the corresponding temperature for 30 min, and subject to TPD test under a constant He gas flow (30 mL min⁻¹) as heated from room temperature to 1000 °C at the heating rate of 10 °C min⁻¹.

3. Results and discussion

3.1. Characterizations of CO₂SM

According to XRD, FTIR, and 13 C NMR technologies, the solid CO₂SM was confirmed as an alkylcarbonate salts [26].

3.2. CaCO₃ precursor

In this section, the effects of CO_2SM dosage, Ca^{2+} concentration, and stirring time in the crystallization process were investigated in detail.

3.2.1. CO₂SM dosages

CaCO₃ precursor was prepared by stirring different dosages of CO₂SM ranging from 6.0 g/L to 60.0 g/L in 50 mL 0.1 mol/L water solution of Ca(NO₃)₂ with at 1000 rpm at room temperature for 1 h. The pH values of reaction solution before and after the reaction, average diameter of crystals and CaCO₃ precursor crystal forms are listed in Table 1 (Samples A–F). The as-prepared CaCO₃ precursors was then characterized by SEM, XRD and FTIR.

As shown in Fig. 2 for the SEM images of the as-obtained CaCO₃ precursors, the average size of spindle-like CaCO₃ particles increased from 0.68 μ m to 0.80 μ m (Fig. 2A–C) along with aggregation, and gradually decreased to 0.51 μ m (Fig. 2D–F) with the increase of CO₂SM dosage. The minimum particle size (0.51 μ m) was found in sample F that was prepared with 60 g/L CO₂SM. The reaction solutions before the reaction were alkaline with the pHs of 8.24-8.31. Therefore, it can be concluded that CO₂SM solution was alkaline, and the alkalinity of reaction solution increased with the increases of EG and EDA contents. After the reaction, pH value of the reaction changed to 6.70, 6.76, 6.85, 6.92, 7.25 or 7.42, respectively, depending the dosage of Ca²⁺.

Fig. 3 shows the XRD patterns and FTIR spectra of the as-prepared CaCO₃ precursor. All samples exhibited peaks at $2\theta = 21.004^{\circ}$, 24.900°, 27.047°, 32.778°, 42.759°, 43.848°, 49.098°, 50.077°, and 55.805° corresponding to (004), (110), (112), (114), (008), (300), (304), (118), and (224) planes, respectively, with no impurity diffraction peaks found

Table 1

As-prepared CaCO₃ precursor under different CO₂SM dosages (6 g/L, 10 g/L, 16 g/L, 20 g/L, 40 g/L and 60 g/L CO₂SM dosages), 50 mL 0.1 mol/L Ca(NO₃)₂ solution and stirring speed at 1000 rpm for 1 h at room temperature.

Sample	CO ₂ SM (g/ L)	pH Before After		Average diameter (μm)	Crystal form of CaCO ₃
А	6	8.24	6.70	0.68	Vaterite
В	10	8.24	6.76	0.71	Vaterite
С	16	8.26	6.85	0.80	Vaterite
D	20	8.26	6.92	0.77	Vaterite
E	40	8.28	7.25	0.65	Vaterite
F	60	8.31	7.42	0.51	Vaterite

Download English Version:

https://daneshyari.com/en/article/6528676

Download Persian Version:

https://daneshyari.com/article/6528676

Daneshyari.com