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A B S T R A C T

The main ideas of the model for droplet heating and evaporation, based on the analytical solution to the heat
conduction equation inside the droplet, and its implementation into ANSYS Fluent are described. The model
is implemented into ANSYS Fluent using User-Defined Functions (UDF). The predictions of ANSYS Fluent
with the new model are verified against the results predicted by in-house research code for an n-dodecane
droplet heated and evaporated in hot air. Also, the predictions of this version of ANSYS Fluent are compared
with in-house experimental data.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A new model for multi-component droplet heating and evapora-
tion, based on the analytical solutions to the heat transfer and species
diffusion equations, has been developed by our group (see Refs. [1,2]
for the details). This model has been validated based on the available
experimental data and the predictions of the numerical codes using
the analytical solution to these equations [3,4].

In the current study the analysis is restricted to mono-component
droplets. The main ideas of the new model and the results of its
implementation into the commercial CFD code ANSYS Fluent, via
User-Defined Functions (UDF), macros, supported by ANSYS Fluent,
are summarised. The results of the implementation of the model are
compared with the predictions of the in-house code and validated
against in-house experimental data.

The mathematical formulation and the implementation of the
model are described in Section 2. In Section 3.1, the predictions of
ANSYS Fluent with the new model are verified against the predic-
tions of the in-house code. In Section 3.2, the experimental set-up
is described, and the results of simulations are compared with the
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experimental data. The main results of the paper are summarised in
Section 4.

2. Formulation of the problem

In the conventional approach, used in most available CFD codes,
including ANSYS Fluent, droplet heating is modelled based on the
solution to the following energy balance equation:

cplmd
dT
dt

= 2pNukgRd (Tg − Ts) + Lṁd + qint, (1)

where cpl is droplet liquid specific heat capacity, md and Rd are
droplet mass and radius, respectively, Nu is the Nusselt number, kg

is gas thermal conductivity, Tg and Ts are gas and surface temper-
atures, respectively, L is the latent heat of evaporation, qint is heat
supplied or removed from internal sources (e.g. chemical reactions).
The derivation of this equation is based on the assumption that
the effects of temperature gradients inside droplets can be ignored.
This assumption is commonly supported by the fact that liquid
thermal conductivity is much higher than gas thermal conductivity
in most engineering applications. At the same time, when mod-
elling transient processes this assumption should be based on the
comparison of the liquid and gas thermal diffusivities and the values
of the Fourier number. In most engineering applications, includ-
ing Diesel engines, liquid thermal diffusivities are much lower than
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Nomenclature

BM, BT Spalding mass and heat transfer numbers
cp specific heat capacity at constant pressure
D binary diffusivity coefficient of vapour in air
h convection heat transfer coefficient
In integrals, used in series (2) and (6)
j parameter, defined in Eq. (4b)
k thermal conductivity
L latent heat of evaporation
m mass
ṁ evaporation rate
M molar mass
NL number of layers inside a droplet
Nu Nusselt number
Pe Peclet number
p pressure
Pr Prandtl number
q heat flux
r radial coordinate from the centre of the droplet
Rd radius of a droplet
Re Reynolds number
Sc Schmidt number
Sh Sherwood number
t time
T temperature
v velocity
Y mass fraction
x molar fraction

Greek symbols
j parameter defined by Eq. (4a)
kn eigenvalues defined by Eq. (3)
l dynamic viscosity
q density
0 parameter defined by Eq. (5e)
w correction function defined by Eq. (4b)
f parameter defined by Eq. (4a)

Subscripts
d droplet
eff effective
g gas
int internal
l liquid
ref reference value
s surface of droplet
sat saturation
t total
v vapour
0 value at the beginning of a time step
∞ value in the far field

those of gas. This obviously brings into question the applicability of
Eq. (1). This equation cannot be used at all when the Fourier numbers
are small.

In an alternative approach to the problem of droplet heating, tak-
ing into account the effects of temperature gradient inside droplets,
the transient heat conduction inside the droplet is solved subject
to the boundary conditions at the surface of the droplet. Assuming
that all the processes inside the droplet are spherically symmetric,

an analytical solution to this equation during any time step Dt (t ∈
[0,Dt]) has been found in the form [2,4]:
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where kn are positive roots to the eigenvalue equation

k cosk + j sink = 0; (3)

in ascending order,
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T0(r) is the initial temperature distribution inside the droplet or
the distribution predicted at the previous time step;

j =
keff

cplqlR2
d

, f (t) =
hTeff (t) Rd

keff
, Teff = Tg +

ṁdL
2pRdNukg

; (4a)
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− 1, h =
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, keff = wkl,
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, (4b)
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, Red =
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where BM = (Yvs − Yv∞)/(1 − Yvs), Yv∞ and Yvs are mass fractions of
vapour in the ambient gas and at the droplet surface. Note that

Yvs =
xvsMv

xvsMv + (1 − xvs) Ma
, xvs =

psat

p
.

The Nusselt number is approximated as [2]:

Nu =
ln (1 + BT)

BT
Nu∗, (5a)
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, (5b)
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)
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, (5c)

F(BT,M) = (1 + BT,M)0.7 ln (1 + BT,M)

BT,M
, BT = (1 + BM)

0 − 1, (5d)
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Nu∗ , Pr =
cpglg

kg
, Sc =

lg

qgD
. (5e)
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