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A B S T R A C T

For the time-dependent thermal convection problems with temperature-dependent coefficients, the
implicit–explicit scheme is presented, in which mixed finite element method is applied for the spatial
approximation of the velocity, pressure and temperature while the time discretization is based on the high-
order backward difference scheme. Linear terms are dealt with the implicit scheme while the nonlinear
terms are treated by the semi-implicit scheme. The advantages for this scheme are unconditionally sta-
ble, decoupled computational and second order accuracy. Finally, numerical tests illustrate the theoretical
results of the presented schemes, and display that the highly efficient method conserves the property of
divergence free of the original problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Boussinesq model is one of the most useful models in fluid
and geophysical fluid dynamics. This model also constitutes an
important system of equations in atmospheric dynamics and a dis-
sipative nonlinear system of equations. Since this system does not
contain only the velocity and pressure fields but also the tempera-
ture field. Note that the convection is a nonlinear transport process
in this model. Hence, it is difficult to achieve long time numeri-
cal simulations for this model. Thus, development of an efficient
computational method for investigating this model has drawn the
attentions of many researchers because of many real applications.
There are so far numerous works devoted to the development of effi-
cient numerical schemes for the conduction–convection equations
with constant coefficients [1–8]. For example, the finite element
method, the penalty method, the variational multiscale method, etc.
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Recently, a lot of experiments have shown that the variation of
viscosity with the temperature is an important factor for details of
the flow, for example, the process of glass production and the man-
tle convection inside. In particular, the viscosity depends strongly
on the temperature of the mantle flow. So the nonlinear natu-
ral convection model with temperature-dependent coefficients has
drawn the attention. From the mathematical point of view, Lorca
and Boldrini [14] have first used the spectral Galerkin method
and proved the existence of global weak solutions in 3D and local
strong solution in 2D to the initial value problem for a general-
ized Boussinesq model under mild assumptions on the temperature
dependency of the viscosity and thermal conductivity and no-slip
boundary condition. In 2009, Gunzburger et al. [16] established the
well-posedness of the infinite Prandtl number model for convection
with temperature-dependent viscosity under the free-slip bound-
ary condition and zero horizontal fluxes. As far as we know, there
are few researches on the fully discrete methods for the nonstation-
ary thermal convection problems with variable coefficients, since
the convection term is a nonlinear transport process in our model.
Based on the energy method, Tabata and Tagami [15] in 2005 derived
the error estimates of finite element methods for this model with
temperature-dependent coefficients by using the first-order back-
ward Euler method in time and the conforming finite elements in
space without numerical tests. They didn’t consider the high-order
time discretization schemes and the influence of the Prandtl number
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and the Rayleigh number on the solution of the nonlinear natural
convection model.

In general, there exist three classical schemes to deal with the
time-dependent problems, which are the fully implicit, implicit–
explicit, and explicit schemes. Among them, high-order schemes
are of more interest because the first-order schemes are not suf-
ficiently accurate for long time approximations. Meanwhile, the
stability condition of schemes is also a key issue. Usually an explicit
scheme is easy in computation, but it suffers a severely restricted
time step size from stability requirement. Although the fully implicit
schemes are (almost) unconditionally stable, one has to solve a
system of nonlinear equations at each time step. Hence, we often
use the implicit–explicit schemes to solve the nonlinear prob-
lems. Namely, we adopt an implicit scheme for the linear terms
and an implicit–explicit scheme for the nonlinear terms. More-
over, the well-known high-order backward difference formula is one
of this approach. Recently, Su et al. [5] proposed a second-order
accuracy scheme based on Crank–Nicolson extrapolation for the
two-dimensional time-dependent conduction–convection equations
with constant coefficients, which is almost unconditionally stable.
However the stability of this scheme is not good enough compared
with other second-order implicit–explicit schemes for long time
numerical simulations.

In this paper, we are concerned with the implicit–explicit decou-
pled finite element scheme for the nonstationary conduction–
convection equations with temperature-dependent coefficients.
Based on the high-order backward difference scheme, the first-order
and second-order implicit–explicit fully discretized schemes are pro-
posed respectively, in which we use an implicit scheme for the linear
terms and the semi-implicit schemes for the nonlinear terms. Mixed
finite element method (e.g. P2 − P1 − P2andP1b − P1 − P1) is applied
for the spatial approximation of the velocity, pressure and tempera-
ture. Then the numerical results illustrate the high efficiency of the
proposed schemes. Note that these schemes guarantee the property
of solenoidal vector field for the original problem in a way.

The remainder of this paper is organized as follows. In Section 2,
we introduce the notations, an abstract functional setting of the
time-dependent thermal convection problems with temperature
dependent coefficients. Mixed finite element strategy is recalled and
some well-known results used throughout this paper in Section 3.
Fully discrete method based on the implicit–explicit decoupled
scheme is given in Section 4. In Section 5, numerical experiments
are given to verify the theoretical results completely. Finally, we end
with a short conclusion in Section 6.

2. Preliminaries

Let Y be a bounded, convex and open subset of R
d(d = 2, 3)

with a Lipschitz continuous boundary ∂Y. We consider the following
time-dependent thermal convection problems with temperature-
dependent coefficients

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr−1 (ut + (u • ∇)u) − ∇ • (m(h)D(u)) + ∇p − Rab(h)h = f , in Y × (0, T],

∇ • u = 0, in Y × (0, T],

ht − ∇ • (j(h)∇h) + u • ∇h = g, in Y × (0, T],

u(x, 0) = u0, h(x, 0) = h0, on Y × {0},
u = uD , h = hD in ∂Y × (0, T],

(1)

where u ∈ R
d represents the velocity vector, p = p(x, t) the pres-

sure, h = h(x, t) the temperature, Pr the Prandtl number, which is
the ratio of the representative value of the kinematic viscosity to the

representative value of the thermal diffusivity, and Ra the Rayleigh
number, which denotes the ratio of relative heating to the overall
dissipation. D(u) = 1

2 (∇u + ∇uT ) is the symmetrized deformation
tensor. m, j ∈ R

+ and b ∈ R
d denote the generalized viscosity, ther-

mal conductivity, and thermal expansion coefficients depending on
the temperature respectively. Such dependence could be of great
importance in cases of the large temperature in some certain appli-
cations. (u0, h0) and (uD, hD) denote the initial value and boundary
value respectively. f and g denote the external force and heat source
respectively. T is the given final time and ut = ∂u/∂t, ht = ∂h/∂t.
Furthermore, assume the given functions m, j ∈ C(Ȳ × [0, T]) and
b ∈ C(Ȳ × [0, T]).

With the standard Sobolev spaces

X = (H1(Y))d, X0 = (H1
0(Y))d, W = H1(Y), W0 = H1

0(Y),

M = L2
0(Y) = {q ∈ L2(Y) :

∫
Y

qdx = 0},

a weak formulation of Eq. (1) reads: find (u, p, h) ∈ (X, M, W) for all
t ∈ (0, T] such that for all (v, q, s) ∈ (X0, M, W0) and (u, h)|∂Y = (uD, hD),

⎧⎪⎪⎨
⎪⎪⎩

Pr−1 ((ut , v) + b(u; u, v)) + Bm((u, p); (v, q)) − ab(h, v) = ( f , v),

(ht , s) + aj(h, s) + b̄(u; h, s) = (g, s),

u(x, 0) = u0, h(x, 0) = h0,

(2)

with

am(u, v) = (m(h)∇u, ∇v), d(v, q) = (q, divv), aj (h, s) = (j(h)∇h, ∇s),

b(u; v, w) = ((u • ∇)v, w) +
1
2

(w(divu), v) =
1
2

((u • ∇)v, w) − 1
2

((u • ∇)w, v),

b̄(u; h, s) = ((u • ∇)h, s) +
1
2

(h(divu), s) =
1
2

((u • ∇)h, s) − 1
2

((u • ∇)s, h),

Bm((u, p); (v, q)) = am(u, v) − d(v, p) + d(u, q), ab(h, v) = (Rab(h)h, v).

The trilinear forms b( • ; • , • ) and b̄( • ; • , • ) satisfy

|b(u; v, w)| ≤ N ‖∇u‖0‖∇v‖0‖∇w‖0, ∀u, v, w ∈ X,

|b̄(u; h, s)| ≤ N̄ ‖∇u‖0‖∇h‖0‖∇s‖0, ∀(u, h, s) ∈ (X, W , W), (3)

where

N = sup
u,v,w∈X

|b(u; v, w)|
‖∇u‖0‖∇v‖0‖∇w‖0

, N = sup
u∈X,h,s∈W

|b̄(u; h, s)|
‖∇u‖0‖∇h‖0‖∇s‖0

.

Using the similar techniques in [14–16], if the spaces X and M
satisfy the continuous inf-sup condition, the existence and unique-
ness of solution (u, p, h) for problem (2) can be obtained under some
reasonable propositions on the given functions f, g,m, j and b, the ini-
tial boundary conditions (u0, h0) and (uD, hD), and the smoothness of
boundary. And the maximum principle of this problem can be also
obtained. Interested readers can refer to [14, 15] for details.

3. Mixed finite element method

Now we introduce the standard finite-dimensional subspaces
(Xh, Mh, Wh) ⊂ (X, M, W) which are characterized by Kh, a partition-
ing of Y into triangles K with the mesh size h ∈ (0, 1), assumed
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