
ELSEVIER

Contents lists available at ScienceDirect

Journal of CO2 Utilization

journal homepage: www.elsevier.com/locate/jcou

A novel application of α - and β -sodium ferrite as a CO_2 -capturing solid in air with water vapor

Ikuo Yanase*, Shuhei Onozawa, Kouhei Ogasawara, Hidehiko Kobayashi

Saitama University, Faculty of Engineering, Department of Applied Chemistry, 255 Shimoohkubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan

ARTICLE INFO

Keywords: CO₂ Sodium ferrite Water vapor pH

ABSTRACT

The CO_2 adsorption properties of synthesized sodium ferrites (α -NaFeO $_2$ and β -NaFeO $_2$) under air and CO_2 flows with various relative humidity (RH) were investigated. Thermogravimetry (TG) analysis showed the CO_2 adsorption reactions of α - and β -NaFeO $_2$ were promoted even at room temperature (RT) by increasing RH even in air with a low CO_2 concentration and the CO_2 reaction ratio of β -NaFeO $_2$ was larger than that of α -NaFeO $_2$. X-ray photo spectroscopy (XPS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) clarified that Na_2CO_3 -H $_2O$ and $NaHCO_3$ were produced under air and CO_2 flows, respectively, and Na_{1-x} -FeO $_2$ and α -Fe $_2O_3$ were produced for α - and β -NaFeO $_2$ after the CO_2 adsorption, respectively. The Na^+ concentration and pH were rapidly increased by dispersing $NaFeO_2$ into distilled water. It was therefore found that a basic solution was formed on the surface of $NaFeO_2$ by the adsorption of water molecules on the surface, giving rise to the promotion of CO_2 adsorption of $NaFeO_2$ at as low as RT in atmospheres with low CO_2 concentrations.

1. Introduction

Various inorganic metal oxides, including alkaline ions such as lithium silicate (Li₄SiO₄) [1-5], lithium zirconium (Li₂ZrO₃) [6], lithium ferrite (LiFeO₂) [7-11], lithium titanate (Li₂TiO₃) [12], and sodium silicate (Na₂SiO₃) [13] have been studied as CO₂ adsorption materials. These materials are useful for CO2 capture under moderate and high temperatures by the production of lithium carbonates under a CO2 atmosphere. However, the CO2 adsorption rates of these materials at lower temperatures are very small, indicating that these inorganic metal oxides are not suitable for CO2 capture at low temperatures ranging from room temperature to 100 °C. On the other hand, inorganic compounds such as O3-LiFeO2, which has a layered structure with the space group R-3m and is composed of FeO₆ octahedra in which sodium ions are aligned [14-16], are unstable and produce carbonates under water vapor [11]. This is because the lithium ions are removed from the layered structure when the surface of the compound contacts water [17]. As for lithium compounds, it was also reported that lithium metasilicates (Li₂SiO₃) composed of a SiO₄ framework structure including Li⁺ ions reacted with CO₂ at as low as 150 °C under water vapor [18].

Sodium ferrites (α -NaFeO $_2$) have a layered structure with the space group R-3m, similar to O3-LiFeO $_2$, [13–15] 14–16 and have been studied as cathode materials in rechargeable sodium-ion secondary batteries [19,20]. The structural features of α -NaFeO $_2$ suggest that sodium ions in the layered structure composed of FeO $_6$ octahedra are also easily

removed from the structure, similar to the case for O3-LiFeO $_2$ [11]. In fact, α -NaFeO $_2$ can be easily dissolved into water, and the solution formed by the dissolution is capable of capturing CO $_2$ in air [21] because the dissolution of sodium ferrites into water leads to a large pH value. Therefore, NaFeO $_2$ are expected to be a CO $_2$ -capture material under a low CO $_2$ concentration atmosphere due to the formation of a basic solution on the surface of NaFeO $_2$. The CO $_2$ adsorption mechanism of NaFeO $_2$ is different from that of traditional CO $_2$ -capture materials such as M $_2$ CO $_3$ (M = Li, Na, K) and zeolites [22], suggesting a novel application of NaFeO $_2$ for CO $_2$ -adsorption materials.

Water vapor in air easily adsorbs on the surface of substances, suggesting that the adsorption of water vapor gives rise to the formation of a basic water droplet and/or a water film [23] on the surface of sodium ferrites and the chemical reaction of the basic water with CO₂ [24,25]. The crystal structure of $\beta\text{-NaFeO}_2$ consisting of FeO₄ tetrahedra [26] is different from $\alpha\text{-NaFeO}_2$ consisting of FeO₆ octahedra, suggesting CO₂ adsorption properties of $\alpha\text{-NaFeO}_2$ and $\beta\text{-NaFeO}_2$ are different from each other. In this study, $\beta\text{-NaFeO}_2$ was synthesized in addition to $\alpha\text{-NaFeO}_2$ and the CO₂ adsorption properties of the synthesized $\alpha\text{-}$ and $\beta\text{-NaFeO}_2$ in atmospheres including CO₂ and H₂O were examined.

2. Experimental

Commercially available γ-Fe₂O₃ (> 99% purity, Wako, Japan) and

E-mail address: yanase@apc.saitama-u.ac.jp (I. Yanase).

^{*} Corresponding author.

RH measurement CO₂/Ar, air Powder sample outlet RH is controlled by changing water amount

Fig. 1. Experimental apparatus for ${\rm CO_2}$ adsorption under various gases (${\rm CO_2}$, Ar, air) with controlled relative humidity (RH). Here, the ${\rm CO_2}$ concentration was 0.05%.

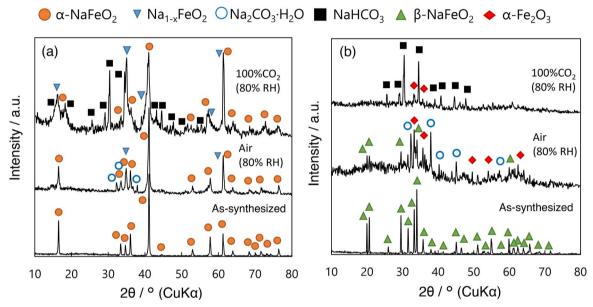


Fig. 2. XRD patterns of (a) α -NaFeO₂ and (b) β -NaFeO₂ absorbed CO₂ at room temperature (RT) under air (0.05% CO₂) or 100% CO₂ with 80% RH.

NaNO $_3$ (> 99% purity, Wako, Japan) powders were measured to have a molar ratio of Na/Fe = 1; then, the above two powders were mixed in ion-exchanged water for 1 h with ultrasonic treatment. After removing water with an evaporator, the mixed powder was dried and then heated at temperatures of 550 and 650 °C for 15 h in air to synthesize α -NaFeO $_2$ single-phase powders. Similarly, the mixed powder was dried and then heated at 800 °C for 4 h in air to synthesize β -NaFeO $_2$ single-phase powders.

The CO₂ adsorption reaction using α-NaFeO₂ was carried out in a mullite tube at various temperatures for 5 h under air or CO₂ gas with a pressure of 0.1 MPa and a flow rate of 200 ml/min (Fig. 1). The relative humidity (RH) in various gases with different CO2 concentrations was controlled by bubbling the gases into water at room temperature (RT), as shown in Fig. 1. The CO2 reaction ratio at RT of the synthesized powders were also investigated under CO2 gas with a flow rate of 100 ml/min by thermogravimetry and differential thermal analysis (TG-DTA; Thermoplus TG8120, Rigaku). The CO2 concentration and the relative humidity (RH) in various gases were controlled by mixing Ar gas and bubbling the gas into water, respectively, similar to Fig. 1. The CO₂ concentration in air was approximately 0.05% (500 ppm), measured before bubbling air. The produced phases in the CO2-adsorbed powders were investigated by X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR) with an attenuated total reflection (ATR) attachment. The powder morphologies of the α - NaFeO₂ powders before and after CO₂ adsorption were examined using a field-emission scanning electron microscope (FESEM, S4100, Hitachi).

 N_2 adsorption and desorption isotherms at $-196\,^{\circ}\text{C}$ were used to determine the Brunauer-Emmett-Teller (BET) specific surface area, and CO_2 adsorption isotherms at $25\,^{\circ}\text{C}$ were measured using a BELSOPP-mini II (MicrotracBEL, Japan). Water vapor adsorption and desorption isotherms at $25\,^{\circ}\text{C}$ were measured using a BELSOPP-max II (MicrotracBEL, Japan). The concentrations of Na ions dissolved in water were measured by a sodium ion meter (Horiba, LAQUA B-722). Binding energies for Na 1 s of and Fe 2p in samples were determined using X-ray photospectroscopy (XPS; Kratos, Shimadzu) with MgK α radiation. The binding energies were calibrated using C 1s (284.6 eV) of contaminated carbon.

The theoretical mass increasing ratio for NaFeO₂ was estimated using reactions (1)–(3);

$$2NaFeO_2 + CO_2 \rightarrow Na_2CO_3 + Fe_2O_3, \tag{1}$$

$$2NaFeO_2 + CO_2 + H_2O \rightarrow Na_2CO_3 \cdot H_2O + Fe_2O_3,$$
 (2)

$$2NaFeO_2 + 2CO_2 + H_2O \rightarrow 2NaHCO_3 + Fe_2O_3.$$
 (3)

Here, the theoretical reaction ratios of the above reactions were 19.9%, 28.0%, and 47.8%, respectively.

Download English Version:

https://daneshyari.com/en/article/6528762

Download Persian Version:

https://daneshyari.com/article/6528762

<u>Daneshyari.com</u>