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Available online 22 June 2016 The ‘natural transition’ of a natural convection boundary layer adjacent to an isothermally heated vertical surface
is investigated by means of three-dimensional direct numerical simulation (DNS). In order to trigger ‘natural
transition’ numerically, spatially and temporally random perturbations are introduced into the upstream bound-
ary layer. The propagation of the random perturbations in the streamwise direction is observed. It is found that
there exist two competing wavenumbers of spanwise vortical structures, one large and the other small. The
large wavenumber dominates in the upstream boundary layer, whereas the small wavenumber dominates in
the downstream boundary layer. The streamwise evolution of the mean (time-averaged) streamwise vorticity
observed at planes perpendicular to the heated surface in general reveals two- and three-layer longitudinal
roll structures. Nonlinear processes in a transitioning natural convection boundary layer are also analysed
using Bicoherence method. The transition route and mechanism are discussed based on the power spectra and
Bicoherence spectra of the temperature time series obtained in the boundary layer. A spectrum filling process
during the ‘natural transition’ to turbulence is also observed, which is qualitatively similar to that observed in
Blasius boundary layers.
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1. Introduction

The complete mechanism of laminar-turbulent transition of
boundary-layer flows has been a mystery for decades in the fluid me-
chanics community, which has stimulated extensive and intensive
research in this area. The research on the transition of boundary layers
has been directed to two main streams: ‘natural transition’ and
‘controlled transition’. ‘Natural transition’ refers to the transition subject
to arbitrary environmental disturbances, whereas ‘controlled transition’
refers to the transition subject to predefined disturbances with known
frequency, amplitude and wavelength.

One of the pioneering experimental works with regard to ‘controlled
transition’ in Blasius boundary layerswas reported byKlebanoff et al. [1].
The transition revealed in [1] was classified as a K-type ‘controlled’ tran-
sition, which was excited by superimposed Tollmien–Schlichting (TS)
and oblique waves of the same frequency. The PIV experiment in [2]
and the direct numerical simulation in [3] demonstrated that the K-
type transition is characterized by aligned ^-shaped structures in the
boundary layer. Another typical ‘controlled transition’ is theH-type tran-
sition, which was studied by Kachanov et al. [4], Kachanov and
Levchenko [5], Craik [6], Herbert [7], Berlin et al. [2], Sayadi et al. [3]
and others. The H-type transition is characterized by staggered ^-shaped

structures in the boundary layer. The reviews in [8,9] discussed the char-
acteristics of both types of transition in detail.

Existing research on ‘natural transition’ in natural convection
boundary layers is mainly concerned with the two-dimensional
linear instability of the transitional process, rather than the three-
dimensional transitional process. For the two-dimensional linear insta-
bility of the transitional process, many linear stability analyses (e.g.
[10–12]), experimental investigations (e.g. [13–16]) and direct stability
analyses (e.g. [17–25]) have been devoted to this topic. Among the
existing studies, Zhao et al. [25] has documented comprehensive insta-
bility characteristics of natural convection boundary layers.

With regard to ‘controlled transition’ in natural convection bound-
ary layers, the pioneering work was conducted by Jaluria and Gebhart
[26]. The studied and observed transition in [26] was in fact a K-type
transition. A principal inference in [26] was the existence of a double
longitudinal vortex system, which was recognized as an important
mechanism responsible for the distortion of the base velocity profile.
Audunson and Gebhart [27] later found that the double longitudinal
vortex system was caused by the finite perturbation amplitude and
the interaction between the spanwise and streamwise disturbances.

In the present study, the three-dimensional ‘natural transition’ of
natural convection boundary layers is studied by means of direct nu-
merical simulation for the first time. Spatially and temporally random
perturbations, which are analogous to non-homogenous environmental
disturbances covering a broad band of competing frequencies and
wavelengths, are introduced into the upstream boundary layer. The
evolution of the random perturbations in the streamwise direction is
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followed. Firstly the streamwise vorticities, the corresponding wave-
numbers and the streamwise evolution of the wavenumbers in the
transitioning boundary layer are examined at a Rayleigh number
(defined in Eq. (7) below) Ra= 3.5 × 109. Subsequently, the transition
route and the mechanism for the transition are investigated at a higher
Rayleigh number of Ra = 1.4 × 1010 by means of spectral analysis and
Bicoherence analysis.

2. Mathematical formulation

2.1. Problem description

Under consideration is a Newtonian three-dimensional (3D) natural
convection boundary-layerflow induced by an isothermally heated ver-
tical surface (refer to the schematic shown in Fig. 1). A domain size of
L×H×W is used for the direct numerical simulation. Here, H is the
height of the isothermally heated surface. The determination of the di-
mension L is based on the thickness scale of the viscous boundary
layer, which is δv=Pr1/2H/Ra1/4 [28], to ensure that the far-field bound-
ary condition is satisfied. In the present simulations, L is set at L=0.14H,
which is about 13 times the predicted thickness of the viscous boundary
layer for Ra= 3.5 × 109 and 18 times for Ra= 1.4 × 1010. To minimize
the effects of the end boundaries, the computational domain is extend-
ed at the top and bottom by Ht=Hb=0.1H respectively. No penalty
method is applied in the extended regions and the results in the present
study are obtainedwithin the basic domain L×H×W only. Similar strat-
egies have been employed in [29,30].

The determination of the dimension W is based on the wavelength
of the streamwise vorticity occurring in the boundary layer undergoing
‘natural transition’. In general, the effects of the dimension W on the
characteristics of the transitioning flowwill reduce as the dimension in-
creases, as reported by Lei et al. [31] in a relevant study. In the present
study of the 3D structures of the ‘natural transition’, the spanwise
dimension W of the computational domain is chosen to be at least
2.5 times the spanwise wavelength of the streamwise vorticity based
on the wavelengths obtained from numerical tests using various values

of W. The effects of the spanwise dimension W on the spatial and
temporal wavenumbers will be discussed later.

2.2. Governing equations

The flow under consideration is described by the three-dimensional,
incompressible Navier–Stokes and energy equations. The non-
dimensional forms of these governing equations, under the Boussinesq
approximation, are expressed as follows:

ux þ υy þwz ¼ 0; ð1Þ

ut þ uux þ υuy þwuz ¼ −px þ ∇2u; ð2Þ

υt þ uυx þ υυy þwυz ¼ −py þ ∇2υþ θ � Ra= Pr; ð3Þ

wt þ uwx þ υwy þwwz ¼ −pz þ ∇2w; ð4Þ

θt þ uθx þ υθy þwθz ¼ ∇2θ= Pr; ð5Þ

where u, υ and w are the velocity components in the x, y and z direc-
tions, respectively; p, t and θ are the pressure, time and temperature;
and Ra and Pr are the Rayleigh and Prandtl numbers. The dimensionless
quantities in the governing Eqs. (1)–(5) are obtained as follows:

u ¼ U

vH−1 ; υ ¼ V

vH−1 ; w ¼ W

vH−1 ;

x ¼ X
H
; y ¼ Y

H
; z ¼ Z

H
;

t ¼ τ
H2v−1

; p ¼ P

ρv2H−2 ; θ ¼ T−T0

Th−T0
;

9>>>>>>=
>>>>>>;

ð6Þ

in which U, V, W, X, Y, Z, τ, P and T are the corresponding dimensional
quantities.

The two control parameters of the boundary-layer flow under
consideration are the Rayleigh number Ra and the Prandtl number Pr,
defined as:

Ra ¼ gβΔTH3

υκ
; Pr ¼ v

κ
ð7Þ

where g and ΔT are the gravitational acceleration and the temperature
difference between the isothermal wall and the ambient respectively;
β, v and κ are the thermal expansion coefficient, kinematic viscosity
and thermal diffusivity of the working fluid at the reference (ambient)
temperature T0.

Initially, the fluid in the computational domain is stationary and
isothermal at the non-dimensional temperature θ=0. For tN0, the
following boundary conditions are prescribed:

u ¼ υ ¼ w ¼ 0; θ ¼ 1þ ξ at x ¼ 0; 0 ≤ y b 0:02; −σ ≤ z ≤ σ ;
u ¼ υ ¼ w ¼ 0; θ ¼ 1 at x ¼ 0; 0:02 ≤ y ≤ 1:1; −σ ≤ z ≤ σ ;
u ¼ υ ¼ w ¼ 0; θx ¼ 0 at x ¼ 0; −0:1 ≤ y b 0; −σ ≤ z ≤ σ ;
u ¼ υ ¼ w ¼ 0; θy ¼ 0 at y ¼ −0:1; 0 b x ≤ 0:14; −σ ≤ z ≤ σ ;
uy ¼ υy ¼ wy ¼ 0; θy ¼ 0 at y ¼ 1:1; 0 b x ≤ 0:14; −σ ≤ z ≤ σ ;
ux ¼ υx ¼ wx ¼ 0; θx ¼ 0 at x ¼ 0:14; −0:1 b y b 1:1; −σ ≤ z ≤ σ ;
Γ x; y;−σ ; tð Þ ¼ Γ x; y;σ ; tð Þ:

9>>>>>>>>=
>>>>>>>>;
ð8Þ

where ξ is a temperature perturbation prescribed on the boundary and
σ=W/2H represents the normalized half spanwise width of the com-
putational domain. Γ(x,y,±σ) represents an arbitrary flow quantity on
the xy-planes at z=±σ. The prescription of Γ(x,y,−σ, t)= Γ(x,y,σ, t)
establishes a periodic boundary condition in the spanwise direction.

Fig. 1. Schematic of the computational domain, with the shaded strip near the leading
edge of the heated surface showing the region where perturbations are introduced into
the boundary layer.
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