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Available online 8 March 2016 In this paper, double-diffusive natural convection in an enclosure is introduced by an incompressible smoothed
particle hydrodynamics (ISPH) method. Two different cases of an enclosure have been studied. In the first case,
the non-Darcymodel for natural convection and heat andmass transfer in an enclosure saturatedwith anisotrop-
ic porous media has been investigated numerically by a stabilized ISPH method. The second case including
sloshing rod inside an enclosure filled with free fluid has been studied numerically by a stabilized ISPH method.
In the ISPH algorithm, a semi implicit velocity correction procedure is utilized, and the pressure is implicitly eval-
uated by solving pressure Poisson equation. The results are presented with flow configurations, isotherms, con-
centration contours and averageNusselt and Sherwood numbers for different Darcy numbers from10−4 to 10−2,
porosity values from 0.5 to 0.9, permeability ratio from 0.1 to 10, inclination angle of permeability from 0° to 90°
and Rayleigh numbers from 103 to 105. The results demonstrate the effects of the parameters such as Darcy
number, porosity, permeability ratio and inclination angle in both of the heat and mass transfer rate and the
flow regime. Adding sloshing rod with initial condition inside enclosure affects clearly in heat and mass transfer
and the flow characteristics inside the enclosure. The results from this investigation are well validated and have
favorable comparisons with previously published results.

© 2016 Elsevier Ltd. All rights reserved.

Keyword:
Anisotropic porous media
Double-diffusive
ISPH
Natural convection
Non-Darcy flow
Sloshing rod

1. Introduction

The natural convection in an anisotropic porous medium is an im-
portant area of research due to its wide range of applications including
thermal insulation, flow in mushy region of a solidifying alloy [1] and
flow past heat exchanger tubes [2]. The non-Darcy effects (i.e. the
Forchheimer term) on natural convection in porousmedia have also re-
ceived significant attention. The divergence in the heat transfer results
has been reviewed in detail in Cheng [3] and Prasad et al. [4], among
others. Thus, extensive efforts are being made to include the inertia
and viscous diffusion terms in the flow equations and to examine
their effects in order to develop a reasonably accurate mathematical
model for convective transport in porous media. Detailed accounts of
the research into non-Darcy convection have been reported in Tien
and Hong [5], Cheng [6], Prasad et al. [7], and Kiadias and Prasad [8].
Nield and Bejan [9] provided an excellent summary of the subject
regarding porous media models. The numerical studies of the natural
convection flow in anisotropic porous media were conducted by use
of Brinkman equation [10] or Brinkman–Forchheimer equation with
permeability tensor [11]. They demonstrated that their formulations

were accurate in predicting the flow and heat transfer for various incli-
nations of the principal permeability direction, permeability ratios, and
Darcy numbers. The natural convective flow and heat transfer in a fluid
saturated anisotropic porous medium have been investigated using the
generalized non-Darcy models Nithiarasu et al. [12].

On the other hand, double-diffusive convection refers to buoyancy-
driven flows induced by combined temperature and concentration gra-
dients. The cases of cooperating thermal and concentration buoyancy
forceswhere both forces act in the same direction and opposing thermal
and concentration buoyancy forceswhere both forces act in opposite di-
rections have been considered in the literature. Double diffusion occurs
in a wide range of scientific fields such as oceanography, astrophysics,
geology, biology and chemical processes Beghein et al. [13]. Ostrach
[14] and Viskanta et al. [15] have reported complete reviews on the sub-
ject. Lee and Hyun [16] and Hyun and Lee [17] have reported numerical
solutions for double-diffusive convection in a rectangular enclosure
with aiding and opposing temperature and concentration gradients.
Their solutions were compared favorably with reported experimental
results. Mamou et al. [18] have reported an analytical and numerical
study of double diffusive convection in a vertical enclosure.

In the recent years, the SPH method had been applied into
compressible and incompressible viscous fluid flow problems [19,20].
The SPH was originally developed in compressible flow, and then some
special treatment was required to satisfy the incompressible condition.
One approach is to run the simulations in the quasi-incompressible
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limit, that is, by selecting the smallest possible speed of sound which still
gives a very lowMach number ensuring density fluctuations [19,20]. This
method is known as the weakly compressible smooth particle hydrody-
namics (WCSPH). A newmodel of the SPHmethod with numerical diffu-
sive terms, called δ-SPH, has been introduced by Antuono et al. [21]. The
δ-SPH is built on the assumption that a fluid is weakly-compressible, in
which it allows the implicit fulfillment of the dynamics boundary condi-
tion along the free surface, as described by Colagrossi et al. [22]. Marrone
et al. [23] adapted a δ-SPH schemewith an improved boundary treatment
to simulate violent impact flows. They achieved accurate and robust pre-
dictions for global and local loads of impact flows on structures. Macià
et al. [24] provided an in depth analysis of the most representative
mirroring techniques used in SPH to enforce boundary conditions along
solid profiles. Antuono et al. [25] combined the δ-SPH method with an
enhanced treatment of solid boundaries to simulate 2D gravity waves
generated by a wave maker and propagating into a basin. Marrone et al.
[26] applied a 2D + t approach to study the wave pattern generated by
high speed slender ships with a sharp stem. They described the body
deformation by a proper modeling of the solid boundaries. Colagrossi
et al. [27] studied, in detail, the assumptions of the SPH method such as
(i) surface integral terms on the boundary of the interpolation kernel
support are neglected and (ii) free-surface conditions are implicitly
verified. Landrini et al. [28] used hybrid BEM-SPH to study the fluid me-
chanics of splashing bow waves on ships. Antuono et al. [29] discussed

the use of numerical diffusive terms in weakly-compressible SPH
schemes. They added diffusive terms to the continuity equation in order
to reduce the spurious numerical noise that affects the density and
pressure fields in weakly-compressible SPH schemes. Federico et al. [30]
simulated 2D open-channel flows through an SPH model. Colagrossi
et al. [31] also proposed a particle packing algorithm. This algorithm al-
lows for a drastic reduction of the numerical noise due to particle resettle-
ment during the early stages of flow evolution. Moreover, it can be easily
derived starting from whatever SPH scheme, and applies under the hy-
pothesis that a fluid is weakly-compressible or incompressible as well.

A proposal for developing an incompressible SPH (ISPH) model has
been introduced, which pressure is implicitly calculated by solving a
discretized pressure Poisson equation at every time step. Cummins
and Rudman [32] introduced a new formulation for enforcing
incompressibility in Smoothed Particle Hydrodynamics (SPH). The
method uses a fractional step with the velocity field integrated forward
in timewithout enforcing incompressibility. The resulting intermediate
velocity field is then projected onto a divergence-free space by solving a
pressure Poisson equation derived from an approximate pressure pro-
jection. Lee et al. [33] presented comparisons of a semi-implicit and
truly ISPH algorithm with the classical WCSPH method, showing how
the ISPH model could resolve some problems encountered in incom-
pressible flow simulation by using WCSPH. Khayyer et al. [34,35]
proposed a corrected incompressible SPH method (CISPH) based on a
variation approach to ensure the angular momentum conservation of
ISPH formulations to improve the pressure distribution by improve-
ment of momentum conservation and the second improvement is
achieved by deriving and employing a higher order source term based
on a more accurate differentiation. Hu and Adams [36–38] introduced
angular-momentum conservative smoothed particle dynamics for
incompressible viscous flows and they adapted ISPH method for
multi-phase flow. They proposed projection method combining the di-
vergence of velocity plus density invariance conditions and thus solving
two Poisson equations. Shao and Lo [39] proposed projection method
which consists keeping density invariance condition only. Asai et al.
[40] introduced the stabilized incompressible SPH method by relaxing
the density invariance condition. Aly et al. [41–43] adapted the stabi-
lized incompressible SPH method to simulate multi-fluid problems,
fluid–structure interaction and fluid–soil–structure interactions. Xu
et al. [44] proposed a stabilizing method for the ISPH model based on
keeping divergence-free velocity field, which makes it possible to accu-
rately estimate the pressure while keeping computational time smaller
thanWCSPH. Thismethod consists in slightly shifting the position of the
particles at each iteration so as to avoid highly anisotropic particle
spacing. This method was improved by Lind et al. [45], who proposed
an expression for the position shift based on Fick's law of diffusion.
They also extended the shifting method to free-surface flows.

Numerical modeling of transient natural convection by using SPH
method has also been investigated. Chaniotis et al. [46] proposed a
remeshing algorithm based on weakly compressible flow approach
and performed a comprehensive study for non-isothermal flows.
Remeshing procedure was tested for various benchmark problems for
fluid and energy transport, which include 1-D shock-tube problem,
2-D Taylor–Green flow, 2-D double shear layer, lid-driven flow in a
square cavity, natural convection in a differentially heated cavity and
mixed convection in a driven cavity. From the results, it was found
that remeshing improves the accuracy of simulations since uniform
particle spacing was conserved in each time step. SPH simulation of
flow and energy transport using SPH was performed by Szewc et al.
[47]. In their study, natural convection in a square cavity problem
with a Boussinesq and a non-Boussinesq formulation was performed.
They introduced a newvariant of the Smoothed Particle Hydrodynamics
(SPH) simulations of the natural convection phenomena. Danis et al.
[48] modeled the transient and laminar natural convection in a square
cavity using SPH method with a discretization tool on uniform Eulerian
grids. Recently, Aly [49] modeled the multi-phase flow and natural

Nomenclature

C' concentration of species
C dimensionless species concentration
Cp specific heat
Da Darcy parameter
d0 particle size
F Forchheimer coefficient
g gravitational acceleration vector
H enclosure height
K permeability
k thermal conductivity
Nu Nusselt number
N Buoyancy ratio
Le Lewis number
P pressure
Pr Prandtl number
Ra Rayleigh number
Sh Sherwood number
t time
T' temperature
T dimensionless temperature
U ,V dimensionless velocity components
V velocity vector
W enclosure width
x ,y Cartesian coordinates
X ,Y dimensionless coordinates

Greek symbols
α thermal diffusivity
βT thermal expansion coefficient
βC compositional expansion coefficient
ε porosity
μ viscosity
υ kinematic viscosity
σ ratio of heat capacities
ρ density
τ dimensionless time
∇2 Laplacian operator
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